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Abstract. In a previous paper (Falk and Nussbaum, in Cm Eigenfunc-
tions of Perron–Frobenius operators and a new approach to numerical
computation of hausdorff dimension: applications in R

1, 2016. ArXiv
e-prints arXiv:1612.00870), the authors developed a new approach to
the computation of the Hausdorff dimension of the invariant set of an
iterated function system or IFS and studied some applications in one
dimension. The key idea, which has been known in varying degrees of
generality for many years, is to associate to the IFS a parametrized fam-
ily of positive, linear, Perron-Frobenius operators Ls. In our context, Ls

is studied in a space of Cm functions and is not compact. Nevertheless,
it has a strictly positive Cm eigenfunction vs with positive eigenvalue
λs equal to the spectral radius of Ls. Under appropriate assumptions
on the IFS, the Hausdorff dimension of the invariant set of the IFS is
the value s = s∗ for which λs = 1. To compute the Hausdorff dimension
of an invariant set for an IFS associated to complex continued fractions,
(which may arise from an infinite iterated function system), we approx-
imate the eigenvalue problem by a collocation method using continuous
piecewise bilinear functions. Using the theory of positive linear opera-
tors and explicit a priori bounds on the partial derivatives of the strictly
positive eigenfunction vs, we are able to give rigorous upper and lower
bounds for the Hausdorff dimension s∗, and these bounds converge to
s∗ as the mesh size approaches zero. We also demonstrate by numeri-
cal computations that improved estimates can be obtained by the use
of higher order piecewise tensor product polynomial approximations,
although the present theory does not guarantee that these are strict
upper and lower bounds. An important feature of our approach is that
it also applies to the much more general problem of computing approxi-
mations to the spectral radius of positive transfer operators, which arise
in many other applications.
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1. Introduction

Our interest in this paper is in describing methods which give rigorous esti-
mates for the Hausdorff dimension of invariant sets for (possibly infinite)
iterated function systems or IFS’s. For simplicity, we do not consider here
the important case of graph directed iterated function systems, for which a
similar approach can be given. Our immediate application is to the case of
invariant sets for IFS’s associated to complex continued fractions, but we
expect to show in future work that other interesting examples can also be
treated. In previous work [13], we considered IFS’s in one dimension, and in
particular the computation of the Hausdorff dimension of some Cantor sets
arising from continued fraction expansions and also other examples in which
the underlying maps have less regularity.

To describe our present results, we first recall some general facts about
iterated function systems. Let D be a complete metric space with metric ρ,
and θb : D → D, b ∈ B, a contraction mapping, i.e., a Lipschitz mapping (with
respect to ρ) with Lipschitz constant Lip(θb), satisfying Lip(θb) := cb < 1. If
B is finite and the above assumption holds, it is known (see Section 3 of [22] or
Chapter 2, Section 2 of [11]) that there exists a unique, compact, nonempty
set C ⊂ D such that C = ∪b∈Bθb(C). The set C is called the invariant set for
the IFS {θb : b ∈ B}. If B is infinite and sup{cb : b ∈ B} = c < 1, there is a
naturally defined nonempty invariant set C ⊂ D such that C = ∪b∈Bθb(C),
but C need not be compact (e.g., see [36] or [37]). In [13], the index set B
was finite and could be simply described by the notation θj , j = 1, . . . ,m. In
the case of complex continued fractions, which we consider here, b = m + ni,
m belonging to a subset of N and n belonging to a subset of Z.

Although we shall eventually specialize, since the method we consider
has applications other than the one we describe in this paper, it is useful,
as was done in [13], to describe initially some function analytic results in
the generality of the previous paragraph. Let H be a bounded, open, mildly
regular (defined in Sect. 4) subset of Rn and let Ck

C
(H̄) denote the complex

Banach space of Ck complex-valued maps, all of whose partial derivatives
of order ν ≤ k extend continuously to H̄. For a given positive integer N ,
assume that gb : H̄ → (0,∞) are strictly positive CN functions for b ∈ B and
θb : H̄ → H̄, b ∈ B, are CN maps and contractions. For s > 0 and integers k,
0 ≤ k ≤ N , one can define a bounded linear map Ls,k : Ck(H̄) → Ck(H̄) by
the formula

(Ls,kf)(x) =
∑

b∈B
[gb(x)]sf(θb(x)). (1.1)
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Note that (1.1) also defines a bounded linear map of Ck
R
(H̄) to itself,

which (abusing notation), we shall also denote by Ls,k. Linear maps like
Ls,k are sometimes called positive transfer operators or Perron-Frobenius
operators and arise in many contexts other than computation of Hausdorff
dimension: see, for example, [1]. If r(Ls,k) denotes the spectral radius of Ls,k,
then λs = r(Ls,k) is positive and independent of k for 0 ≤ k ≤ N ; and λs

is an algebraically simple eigenvalue of Ls,k with a corresponding unique,
normalized strictly positive eigenfunction vs ∈ CN (H̄). Furthermore, the
map s �→ λs is continuous. If σ(Ls,k) ⊂ C denotes the spectrum of Ls,k,
σ(Ls,k) depends on k, but for 1 ≤ k ≤ N ,

sup{|z| : z ∈ σ(Ls,k) \ {λs}} < λs. (1.2)

If k = 0, the strict inequality in (1.2) may fail. A more general version of
the above result is stated in Theorem 4.1 of this paper and Theorem 4.1 is
a special case of results in [43]. The method of proof involves ideas from the
theory of positive linear operators, particularly generalizations of the Krĕın-
Rutman theorem to noncompact linear operators; see [2,31,35,40,41,43,49].
Although the example of complex continued fractions that we study in this
paper leads to an analytic IFS, we also have in mind allowing perturbations
to a Cm IFS (e.g., as done in Section 5 of [13]). Hence, we work in a Banach
space of Cm functions. Note however, that the particular problem in this
paper can also be set up in a Banach space of analytic functions in two
complex variables (see [37]).

The linear operators which are relevant for the computation of Hausdorff
dimension comprise a small subset of the transfer operators described in (1.1),
but the analysis problem which we shall consider here can be described in the
generality of (1.1) and is of interest in this more general context. We want
to find rigorous methods to estimate r(Ls,k) accurately and then use these
methods to estimate s∗, where, in our applications, s∗ will be the unique
number s ≥ 0 such that r(Ls,k) = 1. Under further assumptions, we shall
see that s∗ equals dimH(C), the Hausdorff dimension of the invariant set
associated to the IFS. This observation about Hausdorff dimension has been
made, in varying degrees of generality by many authors. See, for example,
[4–6,9–11,17,19–24,26,36,37,44,46–48,50].

We assume in this paper that H is a bounded, open mildly regular
subset of R

2 = C and that θb, b ∈ B, are analytic or conjugate analytic
contraction maps, defined on an open neighborhood of H̄ and satisfying
θb(H) ⊂ H. We define Dθb(z) = limh→0 |[θb(z + h) − θb(z)]/h|, where h ∈ C

in the limit, and we assume that Dθb(z) 
= 0 for z ∈ H̄. In this case, Ls,k is
defined by (1.1), with x replaced by z, and gb(z) = Dθb(z). It is then possible
to obtain explicit upper and lower bounds for Dp

1vs(x1, x2))/vs(x1, x2) and
Dp

2vs(x1, x2))/vs(x1, x2), where D1 = ∂/∂x1 and D2 = ∂/∂x2. However, for
simplicity we restrict ourselves to the choice θb(z) = (z + b)−1, where b ∈ C

and Re(b) > 0. In this case we obtain in Sect. 5 explicit upper and lower
bounds for Dp

kvs(x1, x2))/vs(x1, x2) for 1 ≤ p ≤ 4, 1 ≤ k ≤ 2, and x1 > 0. In
both the one and two dimensional cases, these estimates play a crucial role
in allowing us to obtain rigorous upper and lower bounds for the Hausdorff
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dimension. Of course, obtaining these estimates adds to the length of [13]
and this paper. However, aside from their intrinsic interest, we believe these
results will prove useful in other contexts, e.g., in treating generalizations of
the Texan conjecture (see [23,28]).

The basic idea of our numerical scheme is to cover H̄ by nonoverlapping
squares of side h. We remark that our collection of squares need not be a
Markov partition for our IFS; compare [38]. We then approximate the strictly
positive, C2 eigenfunction vs by a continuous piecewise bilinear function.
Using the explicit bounds on the unmixed derivatives of vs of order 2, we
are then able to associate to the operator Ls,k, square matrices As and Bs,
which have nonnegative entries and also have the property that r(As) ≤
λs ≤ r(Bs). A key role here is played by an elementary fact (see Lemma 2.2
in Sect. 2) which is not as well known as it should be and in the matrix case
reduces to the following observation: If M is a nonnegative matrix and v is
a strictly positive vector and Mv ≤ λv, (coordinate-wise), then r(M) ≤ λ.
Analogously, r(M) ≥ λ if Mv ≥ λv.

If s∗ denotes the unique value of s such that r(Ls∗) = λs∗ = 1, so that
s∗ is the Hausdorff dimension of the invariant set for the IFS under study,
we proceed as follows. If we can find a number s1 such that r(Bs1) ≤ 1, then,
since the map s �→ λs is decreasing, λs1 ≤ r(Bs1) ≤ 1, and we can conclude
that s∗ ≤ s1. Analogously, if we can find a number s2 such that r(As2) ≥ 1,
then λs2 ≥ r(As2) ≥ 1, and we can conclude that s∗ ≥ s2. By choosing
the mesh size for our approximating piecewise polynomials to be sufficiently
small, we can make s1 − s2 small, providing a good estimate for s∗. For a
given s, r(As) and r(Bs) are easily found by variants of the power method
for eigenvalues, since the largest eigenvalue of As (respectively, of Bs) has
multiplicity one and is the only eigenvalue of its modulus. When the IFS is
infinite, the procedure is somewhat more complicated, and we include the
necessary theory to deal with this case.

This new approach was illustrated in [13] by first considering the com-
putation of the Hausdorff dimension of invariant sets in [0, 1] arising from
classical continued fraction expansions. In this much studied case, one defines
θm(x) = 1/(x + m), for m a positive integer and x ∈ [0, 1]; and for a subset
B ⊂ N, one considers the IFS {θm : m ∈ B} and seeks estimates on the Haus-
dorff dimension of the invariant set C = C(B) for this IFS. This problem has
previously been considered by many authors. See [3,5,6,17–21,23,24]. In this
case, (1.1) becomes

(Ls,kv)(x) =
∑

m∈B

( 1
x + m

)2s

v
( 1

x + m

)
, 0 ≤ x ≤ 1,

and one seeks a value s ≥ 0 for which λs := r(Ls,k) = 1.
In Sect. 3, we consider the computation of the Hausdorff dimension of

some invariant sets arising from complex continued fractions. Suppose that
B is a subset of I1 := {m + ni : m ∈ N, n ∈ Z}, and for each b ∈ B,
define θb(z) = (z + b)−1. Note that θb maps Ḡ = {z ∈ C : |z − 1/2| ≤ 1/2}
into itself. We are interested in the Hausdorff dimension of the invariant set
C = C(B) for the IFS {θb : b ∈ B}. This is a two dimensional problem and
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we allow the possibility that B is infinite. In general (contrast work in [24]
and [23]), it does not seem possible in this case to replace Ls,k, k ≥ 2, by an
operator Λs acting on a Banach space of analytic functions of one complex
variable and satisfying r(Λs) = r(Ls,k). We note that it is possible to set this
problem up in a Banach space of two complex variables (c.f. [37]). Instead,
we work in C2(Ḡ) and apply our methods to obtain rigorous upper and lower
bounds for the Hausdorff dimension dimH(C(B)) for several examples. The
case B = I1 has been of particular interest and is one motivation for this
paper. In [16], Gardner and Mauldin proved that d := dimH(C(I1)) < 2. In
Theorem 6.6 of [36], Mauldin and Urbański proved that 1.2484 ≤ d ≤ 1.885,
and in [45], Priyadarshi proved that d ≥ 1.78. In Sect. 3.2, we show (modulo
roundoff errors in the calculation) that 1.85574 ≤ d ≤ 1.85589. We believe
(see Remark 3.1 in Sect. 3) that this estimate can be made rigorous by using
interval arithmetic along with high order precision, although since we consider
this paper to be a feasibility study, we have not done this.

In the case when the eigenfunctions vs have additional smoothness, it
is natural to approximate vs(·) by piecewise tensor product polynomials of
higher degree. In this situation, the corresponding matrices As and Bs may
no longer have all nonnegative entries and so the arguments of this paper
are no longer directly applicable. However, as demonstrated in Table 2 and
Table 3, this approach gives much improved estimates for the value of s for
which r(Ls) = 1. It is our intent to develop an extension of our theory to
make these into rigorous bounds.

It is also worth comparing the approach used in our paper with that of
McMullen [38]. Superficially the methods seem different, but there are under-
lying connections. We exploit the existence of a Ck, strictly positive eigen-
function vs of (1.1) with eigenvalue λs equal to the spectral radius of Ls,k; and
we observe that explicit bounds on derivatives of vs can be exploited to prove
convergence rates on numerical approximation schemes which approximate
λs. McMullen does not explicitly mention the operator Ls,k or the analogue
of Ls,k for graph directed iterated function systems, and he does not use Ck,
strictly positive eigenfunctions of equations like (1.1) or obtain bounds on
partial derivatives of such positive eigenfunctions. Instead, he exploits finite
positive measures μ which are called “F−invariant densities of dimension δ.”
If s∗ is a value of s for which the above eigenvalue λs = 1, then in our con-
text the measure μ is an eigenfunction of the Banach space adjoint (Ls∗,0)∗

with eigenvalue 1, and our s∗ corresponds to δ above. Standard arguments
using weak∗ compactness, the Schauder-Tychonoff fixed point theorem, and
the Riesz representation theorem imply the existence of a regular, finite, pos-
itive, complete measure μ, defined on a σ-algebra containing all Borel subsets
of the underlying space H̄ and such that (Ls∗,0)∗μ = μ and

∫
vs∗ dμ = 1.

McMullen also uses refinements of Markov partitions, while our parti-
tions, both here and in [13], need not be Markov. However, in the end, both
approaches generate (different) n×n nonnegative matrices Ms, parametrized
by a parameter s and both methods use the spectral radius of Ms to approx-
imate the desired Hausdorff dimension s∗. McMullen’s matrices are obtained
by approximating certain nonconstant functions defined on a refinement of



61 Page 6 of 46 R. S. Falk, R. D. Nussbaum IEOT

the original Markov partition by piecewise constant functions defined with
respect to this refinement. We approximate by bilinear functions on each
subset in our partition. As we show below, by exploiting estimates on higher
derivatives of vs(·), our methods give explicit upper and lower bounds for s∗
and more rapid convergence to s∗ than one obtains using piecewise constant
approximations.

The square matrices As and Bs mentioned above and described in more
detail later in the paper have nonnegative entries and satisfy r(As) ≤ λs ≤
r(Bs). To apply standard numerical methods, it is useful to know that all
eigenvalues μ 
= r(As) of As satisfy |μ| < r(As) and that r(As) has algebraic
multiplicity one and that corresponding results hold for r(Bs). Such results
were proved in Section 7 of [13] in the one dimensional case when the mesh
size, h, is sufficiently small, and a similar argument can be used in the two
dimensional case under study here. Note that this result does not follow
from the standard theory of nonnegative matrices, since As and Bs typically
have zero columns and are not primitive. As in [13], we can also prove that
r(As) ≤ r(Bs) ≤ (1 + C1h

2)r(As), where the constant C1 can be explicitly
estimated. Once it is known that Ls has a strictly positive eigenfunction, vs,
with eigenvalue λs := r(Ls), the log convexity of s �→ λs and the fact that the
map is strictly decreasing follow easily by an argument given in [42]. See, also
[37]. This same result holds for s �→ r(Ms), where Ms is a naturally defined
matrix such that As ≤ Ms ≤ Bs. This idea is exploited in our computer
code in the following way. Recall that if we can find a number s1 such that
r(Bs1) ≤ 1, then, since the map s �→ λs is decreasing, λs1 ≤ r(Bs1) ≤ 1, and
we can conclude that s∗ ≤ s1. To obtain the best bound, we seek a value s1

such that r(Bs1) is as close as possible to 1, while still remaining ≤ 1. This
is done by a slight modification of the secant method applied to finding a
zero of the function log[r(Bs1)]. A similar approach is used with As to find a
lower bound for s∗.

Since the posting of our work on the arXiv [12], several authors have
taken up the issue of obtaining rigorous upper and lower bounds on the
Hausdorff dimension. In [25], Jenkinson and Pollicott modified methods from
their 2001 paper [24] to rigorously compute the Hausdorff dimension of E[1,2]
to 100 decimal places. In [7], the authors employ the computational approach
developed in [12] and [13] to obtain rigorous estimates for the Hausdorff
dimension of continued fractions whose entries are restricted to infinite sets.

A summary of the paper is as follows. In Sect. 2, we recall the defini-
tion of Hausdorff dimension and present some mathematical preliminaries.
In Sect. 3, we present the details of our approximation scheme for Hausdorff
dimension, explain the crucial role played by estimates on unmixed partial
derivatives of order ≤ 2 of vs, and give the aforementioned estimates for
Hausdorff dimension. We emphasize that this is a feasibility study. We have
limited the accuracy of our approximations to what is easily found using the
standard precision of Matlab and have run only a limited number of examples,
using mesh sizes that allow the programs to run fairly quickly. In addition, we
have not attempted to exploit the special features of our problems, such as
the fact that our matrices are sparse. Thus, it is clear that one could write a
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more efficient code that would also speed up the computations. However, the
Matlab programs we have developed are available on the web at www.math.
rutgers.edu/∼falk/hausdorff/codes.html, and we hope other researchers will
run other examples of interest to them.

The theory underlying the work in Sect. 3 is presented in Sects. 4–
7. In Sect. 4 we describe some results concerning existence of Cm positive
eigenfunctions for a class of positive (in the sense of order-preserving) linear
operators. We remark that Theorem 4.1 in Sect. 4 was only proved in [43] for
finite IFS’s. As a result, some care is needed in dealing with infinite IFS’s. In
Sect. 5, we derive explicit bounds on the partial derivatives of eigenfunctions
of operators in which the mappings θb are given by Möbius transformations
which map a given bounded open subset H of C := R

2 into H. We use
this information in Theorems 5.10–5.13 to obtain results about the case of
infinite IFS’s which are adequate for our immediate purposes. In Sect. 6, we
verify some spectral properties of the approximating matrices which justify
standard numerical algorithms for computing their spectral radii. Finally, in
Sect. 7, we discuss the log convexity of the spectral radius r(Ls), which we
exploit in our numerical approximation scheme.

2. Preliminaries

We recall the definition of the Hausdorff dimension, dimH(K), of a subset
K ⊂ R

N . For a given s ≥ 0 and each set K ⊂ R
N , one defines

Hs
δ (K) = inf

{
∑

i

|Ui|s : {Ui} is a δ cover of K

}
,

where |U | denotes the diameter of U and a countable collection {Ui} of subsets
of RN is a δ-cover of K ⊂ R

N if K ⊂ ∪iUi and 0 < |Ui| < δ for all i. One
then defines the s-dimensional Hausdorff measure

Hs(K) = lim
δ→0+

Hs
δ (K).

Finally, the Hausdorff dimension of K, dimH(K), is defined as

dimH(K) = inf{s : Hs(K) = 0}.

We now state the main result connecting Hausdorff dimension to the
spectral radius of the map defined by (1.1). To do so, we first define the
concept of an infinitesimal similitude. Let (S, d) be a bounded, complete,
perfect metric space. If θ : S → S, then θ is an infinitesimal similitude at
t ∈ S if for any sequences (sk)k and (tk)k with sk 
= tk for k ≥ 1 and sk → t,
tk → t, the limit

lim
k→∞

d(θ(sk), θ(tk)
d(sk, tk)

=: (Dθ)(t)

exists and is independent of the particular sequences (sk)k and (tk)k. Further-
more, θ is an infinitesimal similitude on S if θ is an infinitesimal similitude
at t for all t ∈ S.

www.math.rutgers.edu/~falk/hausdorff/codes.html
www.math.rutgers.edu/~falk/hausdorff/codes.html
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This concept generalizes the concept of affine linear similitudes, which
are affine linear contraction maps θ satisfying for all x, y ∈ R

n

d(θ(x), θ(y)) = cd(x, y), c < 1.

In particular, the examples discussed in [13], such as maps of the form
θ(x) = 1/(x + m), with m a positive integer, are infinitesimal similitudes.
More generally, if S is a compact subset of R1 and θ : S → S extends to a C1

map defined on an open neighborhood of S in R
1, then θ is an infinitesimal

similitude. If S is a compact subset of R2 := C and θ : S → S extends to an
analytic or conjugate analytic map defined on an open neighborhood of S in
C, θ is an infinitesimal similitude.

Theorem 2.1. (Theorem 1.2 of [44]) Let θi : S → S for 1 ≤ i ≤ N be
infinitesimal similitudes and assume that the map t �→ (Dθi)(t) is a strictly
positive Hölder continuous function on S. Assume that θi is a Lipschitz map
with Lipschitz constant ci ≤ c < 1 and let C denote the unique, compact,
nonempty invariant set such that

C = ∪N
i=1θi(C).

Further, assume that θi satisfy

θi(C) ∩ θj(C) = ∅, for 1 ≤ i, j ≤ N. i 
= j

and are one-to-one on C. Then the Hausdorff dimension of C is given by
the unique σ0 such that r(Lσ0) = 1, where Ls : C(S) → C(S) is defined for
s ≥ 0 by

(Lsf)(t) =
N∑

i=1

[Dθi(t)]sf(θi(t)).

Furthermore, Ls has a strictly positive Hölder continuous eigenfunction with
eigenvalue equal to the spectral radius of Ls.

A proof of the existence of the set C in this generality can be found
in [11] generalizing earlier work of [22]. The remainder of the theorem, aside
from the eigenfunction, can be derived from the work of Rugh [48]. Other
related results can be found in [4,11,22,37,47,50].

The following lemma is a well-known result, but we sketch the proof
because the lemma with play a crucial role in some of our later arguments.

Lemma 2.2. Let Q be a compact Hausdorff space, X = CR(Q), the Banach
space of continuous, real-valued functions f : Q → R in the sup norm,

K = {f ∈ X : f(t) ≥ 0 ∀t ∈ Q}, and int(K) = {f ∈ X : f(t) > 0 ∀t ∈ Q}.

If f, g ∈ X, write f ≤ g if g − f ∈ K. Let L : X → X be a bounded linear
map such that L(K) ⊂ K and write r(L) := limn→∞ ‖Ln‖1/n, the spectral
radius of L. If there exists w ∈ int(K) such that Lw ≤ βw for some β ∈ R,
then r(L) ≤ β. If there exists v ∈ K \{0} such that Lv ≥ αv for some α ∈ R,
then r(L) ≥ α.
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Proof. Define u ∈ K by u(t) = 1 ∀t ∈ Q. If f ∈ X and ‖f‖ ≤ 1, then
−u ≤ f ≤ u, so −Lku ≤ Lkf ≤ Lku. It follows that ‖Lkf‖ ≤ ‖Lku‖ and this
implies ‖Lk‖ = ‖Lku‖ and r(L) = limk→∞ ‖Lk‖1/k = limk→∞ ‖Lku‖1/k.

If w ∈ int(K), there exist positive constants c and d such that cw ≤
u ≤ dw, so, for all positive integers k,

cLkw ≤ Lku ≤ dLkw and c‖Lkw‖ ≤ ‖Lku‖ ≤ d‖Lkw‖.

Taking kth roots and letting k → ∞, we obtain r(L) = limk→∞ ‖Lkw‖1/k.
However, if Lw ≤ βw, Lkw ≤ βkw, so r(L) ≤ limk→∞ ‖βkw‖1/k = β. If
Lv ≥ αv for some v ∈ K \ {0}, then Lkv ≥ αkv for all positive integers k
and ‖Lk‖‖v‖ ≥ αk‖v‖. Taking kth roots and letting k → ∞, we find that
r(L) ≥ α. �

Note that if we take Q = {1, 2, . . . , N} and identify CR(Q) with column
vectors in R

N , Lemma 2.2 gives results concerning r(L), where L : RN → R
N

is an N × N matrix with nonnegative entries, or, more abstractly, a linear
map which takes the cone of vectors x with nonnegative entries into itself.

Lemma 2.2 is a special case of much more general results concerning
order-preserving, homogeneous cone mappings: see [30] and also Lemma 2.2
in [32] and Theorem 2.2 in [34]. In the important special case that L is given
by an N×N matrix with non-negative entries, Lemma 2.2 can also be derived
from standard results in [39] concerning nonnegative matrices. A simple proof
in the matrix case we consider here can also be found in Lemma 2.2 in [13].

Our next lemma is also a well-known result. Because it follows easily
from Lemma 2.2, we leave the proof to the reader.

Lemma 2.3. Let notation be as in Lemma 2.2. Suppose that Lj : X → X,
j = 1, 2, are bounded linear maps such that Lj(K) ⊂ K and L1(f) ≤ L2(f)
for all f ∈ K. Then it follows that r(L1) ≤ r(L2). If there exists v ∈ int(K)
with Lv = λv, then r(L) = λ.

3. Iterated Function Systems Associated to Complex
Continued Fractions

3.1. The Problems

Throughout this section we shall always write

D := {(x, y) ∈ R
2 : (x − 1/2)2 + y2 ≤ 1/4}

and U will always denote a bounded, mildly regular open subset of R2 such
that int(D) ⊂ U and x > 0 for all (x, y) ∈ U , while H will denote {(x, y) ∈
U : y > 0}. By writing z = x + iy, we can consider D, H, and U as subsets
of the complex plane. If S ⊂ R

2, we shall use the identification of R2 with C

and say that S is symmetric under conjugation if S = {z̄ : z ∈ S}, where z̄
denotes the complex conjugate of z.

In this section, B will always denote a finite or countable infinite subset
of {w ∈ C := R

2 : Re(w) ≥ 1}, and for b ∈ B, θb will denote the Möbius
transform z �→ 1/(z+b) := θb(z). If G := {z ∈ C : Re(z) ≥ 0}, the reader can
check that for all b ∈ B, θb(G) ⊂ D\{0}; and if b, c ∈ B satisfy Re(b) ≥ γ ≥ 1
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and Re(c) ≥ γ ≥ 1, then θb◦θc : G �→ D\{0} is a Lipschitz map (with respect
to the Euclidean metric) with Lipschitz constant Lip(θb◦θc) ≤ (γ2+1)−2 (see
Lemma 5.1 below). We shall always write I1 := {b = m + ni : m ∈ N, n ∈ Z}
and the case that B ⊂ I1 will be of particular interest.

We shall denote by CC(Ū) (respectively, CR(Ū)) the Banach space of
continuous maps f : Ū → C (respectively, f : Ū → R) with ‖f‖ = max{|f(z)|
: z ∈ Ū}. (Note that Ū will always denote the closure of U and not the image
of U under complex conjugation.) If B is a finite set and s > 0, one can define
a bounded, complex linear map Ls : CC(Ū) → CC(Ū) by

(Lsf)(z) =
∑

b∈B

∣∣∣
d

dz
θb(z)

∣∣∣
s

f(θb(z)) =
∑

b∈B

f(θb(z))
|z + b|2s

. (3.1)

Equation (3.1) also defines a bounded, real linear map of CR(Ū) → CR(Ū),
which (abusing notation) we shall also denote by Ls. We shall denote by
σ(Ls) the spectrum of Ls : CC(Ū) → CC(Ū).

If B is infinite, one can prove (see Section 5 of [40] and [44]) that if, for
some s > 0, the infinite series

∑
b∈B[1/|b|2s] converges, then

∑
b∈B[1/|z+b|2s]

converges for all z ∈ Ū and gives a continuous function on Ū . It then follows
with the aid of Dini’s theorem that Ls given by (3.1) defines a bounded linear
map of CC(Ū) to itself. If we define τ = τ(B) := inf{s > 0 :

∑
b∈B[1/|b|2s] <

∞} (where we allow τ(B) = ∞), it follows from the above remarks that for
all s > τ(B), Ls gives a bounded linear map of CC(Ū) to itself. If s = τ , it
may or may not happen that

∑
b∈B[1/|b|2s] < ∞. In any event, an elementary

calculus argument shows that if s > 1,
∑

b∈B[1/|b|2s] < ∞.
Our goal in the section is to describe how to obtain rigorous upper and

lower bounds for r(Ls), the spectral radius of the operator Ls in (3.1), and
then to indicate how such bounds enable us to rigorously estimate the Haus-
dorff dimension of some interesting sets. To avoid interrupting the narrative
flow, we first list some results which we shall need, but whose proofs will be
deferred to Sects. 4 and 5. If α ≥ 0, R > 0, and B is as before, we define

BR = {b ∈ B : |b| ≤ R} and B′
R = {b ∈ B : |b| > R}.

If B is finite, we shall usually take R ≥ sup{|b| : b ∈ B}, so BR = B. We
define Ls,R,α : CC(Ū) → CC(Ū) by

(Ls,R,αf)(z) =
∑

b∈BR

f(θb(z))
|z + b|2s

+ αf(0). (3.2)

Theorem 3.1. Assume that B is finite and Re(b) ≥ γ ≥ 1 for all b ∈ B. For
each s ≥ 0, there exists a unique (to within scalar multiples) strictly posi-
tive continuous eigenfunction ws ∈ CR(Ū) with positive eigenvalue r(Ls,R,α)
defined by r(Ls,R,α) := limk→∞ ‖Lk

s,R,α‖1/k. (Of course ws also depends on
α and R, but we view α and R as fixed and omit the dependence in our nota-
tion.) If B and U are symmetric under conjugation, then ws(z̄) = ws(z) for
all z ∈ Ū . In general, identifying (x, y) ∈ R

2 with x+ iy ∈ C, ws(x, y) is C∞

on Ū and the following estimates hold.

ws(z0) ≤ ws(z1) exp[(
√

5s/γ)|z1 − z0|], z0, z1 ∈ Ū , (3.3)
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ws(x1, y) ≥ ws(x2, y) ≥ ws(x1, y) exp[(−2s/γ)(x2 − x1)],
0 ≤ x1 ≤ x2, (x1, y), (x2, y) ∈ Ū , (3.4)

ws(x, y1) ≤ ws(x, y2) exp[(s/γ)|y1 − y2|],
(x, y1), (x, y2) ∈ Ū , (3.5)

− s

4γ2(s + 1)
ws(x, y) ≤ Dxxws(x, y) ≤ 2s(2s + 1)

γ2
ws(x, y), (3.6)

− 2s

γ2
ws(x, y) ≤ Dyyws(x, y) ≤ 2s(2s + 1)

4γ2
ws(x, y). (3.7)

Proof. As mentioned above, the proof of this theorem is contained in a series
of results to be established in Sects. 4 and 5. We discuss here how these
later results fit together to establish this theorem. The operator Ls,R,α can
be considered as a bounded linear map of Cm

C
(Ū) to itself for all integers

m ≥ 0, and conditions (H4.1) and (H4.2) in Sect. 4 are clearly satisfied.
Keeping in mind that the constant map ψ(z) := 0 is a contraction mapping
and using Lemma 5.1, one can also see that Ls,R,α : Cm

C
(Ū) → Cm

C
(Ū)

also satisfies condition (H4.3). If Λs,m denotes Ls,R,α considered as a map of
Cm

C
(Ū) to itself, and rs,m denotes the spectral radius of Λs,m, Theorem 4.1

now implies that for m ≥ 1, Λs,m has a unique, normalized, strictly positive
eigenfunction ws,m with eigenvalue rs,m. By using Lemma 2.2 and the strictly
positive eigenfunction ws,m, we then see that rs,m = rs,0 for all m ≥ 1; and
by the uniqueness of ws,m, ws,m = ws,1 for all m ≥ 1 and ws,1 := ws is
C∞. This gives the first part of Theorem 3.1. The proof that ws(z̄) = ws(z)
for all z ∈ Ū when Ū and B are symmetric under conjugation is given in
Corollary 5.9. Corollary 5.9 also gives the proof of equations (3.3)– (3.7). �

Theorem 3.2. Assume that B is infinite and s > 0 satisfies
∑

b∈B[1/|b|2s] <
∞. Then Ls has a unique (to within scalar multiples) strictly positive eigen-
function vs ∈ CR(Ū) with positive eigenvalue r(Ls). This eigenfunction is
Lipschitz and satisfies (3.3), (3.4), and (3.5). If B and U are symmetric
under conjugation, then vs(z̄) = vs(z) for all z ∈ U .

A proof of Theorem 3.2 is given in Theorem 5.10. Several of the results
of this theorem can also be found in [37].

Theorem 3.3. Let assumptions and notation be as in Theorem 3.2 and assume
that R > 2. Then there exist (see Theorems 5.12 and 5.13) real numbers
ηs,R ≥ 0 and δs,R > 0 such that for all z ∈ Ū ,

ηs,Rvs(0) ≤
∑

b∈B,|b|>R

vs(θb(z))
|z + b|2s

≤ δs,Rvs(0).

If B = I1 or B = I2 := {m + ni : m ∈ N, n ∈ Z, n < 0} and s > 1, explicit
estimates for ηs,R and δs,R are given in Theorems 5.12 and 5.13. If α = δs,R,

r(Ls) ≤ r(Ls,R,α); (3.8)

and if α = ηs,R,
r(Ls,R,α) ≤ r(Ls). (3.9)
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If B is finite, we shall usually assume that |b| ≤ R for all b ∈ B and take
α = 0. If B is infinite, we take R large and use (3.8) and (3.9) to estimate
r(Ls). In all cases our problem reduces to finding a procedure which gives
rigorous upper and lower bounds for operators Ls,R,α, where α = δs,R or
α = ηs,R, or α = 0.

If B and U are symmetric under conjugation, let H be as defined at the
beginning of this section and let H̄ denote the closure of H. Let Y = {f ∈
CC(Ū) : f(z) = f(z̄), z ∈ Ū}, so Y is a complex Banach space, and one can
check that Y is linearly isometric to CC(H̄) by f ∈ Y �→ f |H̄ ∈ CC(H̄) and
g ∈ CC(H̄) �→ g̃ ∈ Y , where g̃(z) = g(z) if z ∈ H̄ and g̃(z) = g(z̄) if z ∈ Ū
and z /∈ H̄. In the notation of Theorem 3.2, ws ∈ Y , and the reader can check
that Ls,R,α maps Y into Y , Equivalently, Ls,R,α can be viewed as a bounded
linear map of CC(H̄) to CC(H̄) by defining f(1/(z + b)) = f(1/(z̄ + b̄))
if Im(z + b) ≥ 0 and f(1/(z + b)) = f(1/(z + b)) if Im(z + b) ≤ 0. This
observation will simplify the numerical analysis in later examples.

If Im(b) ≤ −1 for all b ∈ B (but without the assumption that B and U
are symmetric under conjugation) and if Im(z) ≤ 1 for all z ∈ Ū , one can
easily verify that θb(z) ∈ H̄ for all b ∈ B and z ∈ Ū . Thus, again in this case
one can consider Ls,R,α as a map of CC(H̄) to itself, which again will simplify
the numerical analysis.

We now briefly discuss the connection of Theorems 3.1–3.3 to the prob-
lem of computing the Hausdorff dimension of certain sets.

If B ⊂ I1, let B∞ = {ω = (b1, . . . , bk, . . .) : bj ∈ B ∀j ≥ 1}. Given
z ∈ D and ω = (b1, . . . , bk, . . .) ∈ B∞, one can prove (e.g., see [37]) that
limk→∞(θb1 ◦ θb2 ◦ · · · ◦ θbk

)(z) := π(ω) ∈ D exists and is independent of z.
Define C = {π(ω) : ω ∈ B∞}. It is not hard to prove that C = ∪b∈Bθb(C). In
general C is not compact, but if B is finite, C is compact and is the unique
compact, nonempty set C such that C = ∪b∈Bθb(C) ( [11] and [22]). We shall
call C the invariant set associated to B.

Theorem 3.4. (See [37] or Section 5 of [44]) Let B be a subset of I1, let
Ls : CR(Ū) → CR(Ū) be defined by (3.1) for s > τ(B), and let C be the
invariant set associated to B. The Hausdorff dimension s∗ of C is given by
s∗ = inf{s > 0 : r(Ls) = λs < 1} and r(Ls∗) = 1 if B is finite or Ls∗ is
defined. The map s �→ λs is a continuous, strictly decreasing function for
s > τ(B).

In all examples which we shall consider, Ls is a bounded linear map of
CC(U) → CC(U) for s = s∗ and r(Ls∗) = 1.

Theorems 3.1–3.4 reduce the problem of estimating the Hausdorff
dimension of the invariant set C for B ⊂ I1 to the problem of estimating the
value of s for which r(Ls) = 1. If B is finite, we have to estimate r(Ls,R,α)
for α = 0. If B is infinite, Theorem 3.3 implies that we need a lower bound
for r(Ls,R,α) for α = ηs,R and an upper bound for r(Ls,R,α) for α = δs,R.

If B = I1, it was stated in [36] that the Hausdorff dimension of the
associated invariant set C is ≤ 1.885 and in [45], it was shown that the
Hausdorff dimension of the set C is ≥ 1.78. We shall give much sharper
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Figure 1. Domain D+ and mesh domain D+,h

estimates below. We shall also give estimates for the Hausdorff dimension of
the associated invariant set of B ⊂ I1 for some other choices of B, e.g.,

B = I2 := {b = m + ni : m ∈ N,−n ∈ N},

B = I3 := {b = m + ni : m ∈ {1, 2}, n ∈ {0,±1,±2}}.
This is a feasibility study, so we restrict attention to these examples, but our
approach applies to general sets B ⊂ I1; and in fact invariant sets for many
other iterated function systems can be handled by similar methods.

3.2. Numerical Method

Let N > 0 be an even integer, h := 1/N , and let D, U , and H be as in
Sect. 3.1. Define D+ = {(x, y) ∈ D : y ≥ 0}. We consider mesh points of
the form (jh, kh), where j ∈ N ∪ {0} and k ∈ Z. Each mesh point (xj , yk) =
(jh, kh) defines a closed mesh square Rjk with vertices (xj , yk), (xj+1, yk),
(xj , yk+1), and (xj+1, yk+1). If Dh (respectively, D+,h) is a finite union of
mesh squares and Dh ⊃ D (respectively D+,h ⊃ D+), Dh will be called a
mesh domain for D (respectively, a mesh domain for D+). We could choose
D+,h = [0, 1] × [0, 1/2], but that choice would add unknowns we do not use.
Thus we shall usually take Dh (respectively, D+,h) to be the union of squares
Rj,k which have nonempty intersection with the interior of D (respectively,
D+). The domain D+ and a mesh domain D+,h are illustrated in Figure 1.

The mesh domains Dh and D+,h correspond to sets Ū and H̄ in Sect. 3.1.
If D and B are symmetric under conjugation or if Im(b) ≤ −1 for all b ∈ B,
the observations in Sect. 3.1 show that we can restrict attention to D+ and
D+,h instead of the full sets D and Dh. Indeed, this will be the case for
the invariant sets associated to I1, I2, and I3. We also note that in the case
B = I3, there is a smaller domain C ⊂ D, symmetric under conjugation, such
that θb(C) ⊂ C \{0} for b ∈ B. Although we have not done so, we could have
reduced the size of the approximate problem by using a mesh domain Ch

for C.
If Dh is as above, we take Ū = Dh and we assume that 0 ≤ x ≤ 1 and

|y| < 1 for all (x, y) ∈ Ū . Given a set B ⊆ I1 and s > 0, we assume that
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s > τ(B) (so
∑

b∈B(1/|b|2s) < ∞). If B is finite, we assume that R ≥ |b| for
all b ∈ B and define Ls := Ls,R,α with α = 0. If B is infinite, we assume for
the moment that we have found ηs,R ≥ 0 and δs,R > 0 satisfying (3.8) and
(3.9). For α = ηs,R, we define Ls,R− = Ls,R,α and for α = δs,R, we define
Ls,R+ = Ls,R,α (compare (3.2)); we recall that Theorem 3.3 implies that

r(Ls,R−) ≤ r(Ls) ≤ r(Ls,R+).

In all cases, we have an operator Ls,R,α where α ≥ 0 and R > 2.
Theorem 3.1 implies that Ls,R,α has a unique (to within scalar multiples)
strictly positive eigenfunction ws on Ū = Dh which has (assuming α > 0 or
BR 
= ∅) eigenvalue r(Ls,R,α) > 0. The eigenfunction ws is C∞ and satisfies
(3.3)–(3.7). If B is symmetric under conjugation, ws(z̄) = ws(z) for all z ∈
Dh.

We shall now describe how to find rigorous upper and lower bounds
for r(Ls,R,α), where α ≥ 0 or BR 
= ∅. After estimating ηs,R and δs,R, this
will yield rigorous upper and lower bounds for r(Ls). Our approach is to
approximate ws by a continuous, piecewise bilinear function, i.e., ws will
be bilinear on each mesh square Rj,k of the mesh domain Dh. As noted in
Sect. 3.1, we shall be able to work on D+,h in our particular examples.

More precisely, for fixed R and α, our goal is to define nonnegative,
square matrices As and Bs such that

r(As) ≤ r(Ls) ≤ r(Bs), s > τ(B).

If s∗ denotes the unique value of s such that r(Ls∗) = λs∗ = 1, then s∗ is
the Hausdorff dimension of the invariant set associated with B. If we can find
a number s1 such that r(Bs1) ≤ 1, then r(Ls1) ≤ r(Bs1) ≤ 1, and we can
conclude that s∗ ≤ s1. Analogously, if we can find a number s2 such that
r(As2) ≥ 1, then r(Ls2) ≥ r(As2) ≥ 1, and we can conclude that s∗ ≥ s2. By
choosing the mesh size h to be sufficiently small, we can make s1 − s2 small,
providing a good estimate for s∗.

Before describing how to construct the matrices As and Bs, we need to
recall some standard results about bilinear interpolation. On the mesh square

Rk,l = {(x, y) : xk ≤ x ≤ xk+1, yl ≤ y ≤ yl+1},

where xk+1−xk = yl+1−yl = h, the bilinear interpolant f I(x, y) of a function
f(x, y) is given by:

f I(x, y)

=
[xk+1 − x

h

][yl+1 − y

h

]
f(xk, yl) +

[x − xk

h

][yl+1 − y

h

]
f(xk+1, yl)

+
[xk+1 − x

h

][y − yl

h

]
f(xk, yl+1) +

[x − xk

h

][y − yl

h

]
f(xk+1, yl+1).

The error in bilinear interpolation satisfies for all (x, y) ∈ Rk,l and some
points (ak, bl) and (ck, dl) ∈ Rk,l,

f I(x, y) − f(x, y) = 1/2)
[
(xk+1 − x)(x − xk)(Dxxf)(ak, bl)

+ (yl+1 − y)(y − yl)(Dyyf)(ck, dl)
]
.
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For z = x + iy, let f(x, y) = ws(θb(z)). Further let zk,l = xk + iyl. If
(x̃, ỹ) = (Re θb(z), Im θb(z)) ∈ Rk,l, (which we will sometimes abbreviate by
θb(z) ∈ Rk,l), we get

wI
s(θb(z))

=
[xk+1 − x̃

h

][yl+1 − ỹ

h

]
ws(zk,l) +

[ x̃ − xk

h

][yl+1 − ỹ

h

]
ws(zk+1,l)

+
[xk+1 − x̃

h

][ ỹ − yl

h

]
ws(zk,l+1) +

[ x̃ − xk

h

][ ỹ − yl

h

]
ws(zk+1,l+1).

Defining Ψb(z) = 1/(z̄ + b̄), we have an analogous formula for wI
s(Ψb(z)),

with
(x̃, ỹ) = (Re Ψb(z), Im Ψb(z)).

We next use inequalities (3.3)–(3.7) to obtain bounds on the interpola-
tion error. By (3.6) and (3.7), we find for θb(z) = x̃+iỹ, where (x̃, ỹ) ∈ Rk,l,

−
[ s

8γ2(s + 1)
+

s

γ2

]
([xk+1 − x̃][x̃ − xk]ws(ak, bl)

+ [yl+1 − ỹ][ỹ − yl]ws(ck, dl)) ≤ wI
s(θb(z)) − ws(θb(z))

≤ s(2s + 1)
γ2

([xk+1 − x̃][x̃ − xk]ws(ak, bl) + [yl+1 − ỹ][ỹ − yl]ws(ck, dl)) .

Applying (3.3), we then obtain

− s

γ2

[ 9 + 8s

8(s + 1)

]
([xk+1 − x̃][x̃ − xk] + [yl+1 − ỹ][ỹ − yl])

· exp
(√

10sh

γ

)
wI

s(θb(z)) ≤ wI
s(θb(z)) − ws(θb(z))

≤ s(2s + 1)
γ2

([xk+1 − x̃][x̃ − xk] + [yl+1 − ỹ][ỹ − yl])

· exp
(√

10sh

γ

)
wI

s(θb(z)) ≤ wI
s(θb(z)) − ws(θb(z))

≤ s(2s + 1)
γ2

([xk+1 − x̃][x̃ − xk] + [yl+1 − ỹ][ỹ − yl])

· exp
(√

10sh

γ

)
wI

s(θb(z)).

since any point in Rk,l is within
√

2h of each of the four corners of the square
Rk,l. An analogous result holds for ws(Ψb(z)).

Using this estimate, we have precise upper and lower bounds on the
error in the mesh square Rk,l that only depend on the function values of ws

at the four corners of the square and the value of b. Letting

err1b(θb(z))

=
(
[xk+1 − x̃][x̃ − xk] + [yl+1 − ỹ][ỹ − yl]

)s(2s + 1)
γ2

exp(
√

10sh/γ),

err2b(θb(z))
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=
(
[xk+1 − x̃][x̃ − xk] + [yl+1 − ỹ][ỹ − yl]

) s

γ2

[9 + 8s

8 + 8s

]
exp(

√
10sh/γ),

(where again θb(z) = x̃ + iỹ), we have for each mesh point zi,j = xi + iyj ,
with θb(zi,j) ∈ Rk,l,

[1 − err1b(zi,j)]wI
s(θb(zi,j)) ≤ ws(θb(zi,j)) ≤ [1 + err2b(zi,j)]wI

s(θb(zi,j)).

Again, the analogous result holds for ws(Ψb(z)).
To obtain the upper and lower matrices, we first note that for each mesh

point zi,j ,

αws(0) +
∑

b∈BR

1
|zi,j + b|2s

[1 − err1b(zi,j)]wI
s(θb(zi,j))

≤
∑

b∈BR

1
|zi,j + b|2s

ws(θb(zi,j)) + αws(0)

≤
∑

b∈BR

1
|zi,j + b|2s

[1 + err2b(zi,j)]wI
s(θb(zi,j)) + αws(0).

Motivated by the above inequality, we now define matrices As and Bs which
have nonnegative entries and satisfy the property that r(As) ≤ r(Ls) ≤
r(Bs). For clarity, we do this in several steps. For f a continuous, piecewise
bilinear function defined on the mesh domain Dh, we first define operators
As and Bs (which also depend on α) by:

(Asf)(zi,j) =
∑

b∈BR

1
|zi,j + b|2s

[1 − err1b(zi,j)]f(θb(zi,j)) + αf(0),

(3.10)

(Bsf)(zi,j) =
∑

b∈BR

1
|zi,j + b|2s

[1 + err2b(zi,j)]f(θb(zi,j)) + αf(0),

(3.11)

where zi,j is a mesh point in Dh. In the above, if (x̃, ỹ) = (Re θb(z), Im θb(z)) ∈
Rk,l, then, using bilinearity,

f(θb(z)) =
[xk+1 − x̃

h

][yl+1 − ỹ

h

]
f(zk,l) +

[ x̃ − xk

h

][yl+1 − ỹ

h

]
f(zk+1,l)

+
[xk+1 − x̃

h

][ ỹ − yl

h

]
f(zk,l+1)

+
[ x̃ − xk

h

][ ỹ − yl

h

]
f(zk+1,l+1). (3.12)

Let Q = {zi,j : zi,j is a mesh point of Dh} and consider the finite
dimensional vector space CR(Q). We can consider f above as an element
of CR(Q), where f(θb(z)) is defined by (3.12). If we use (3.12) in (3.10) and
(3.11), As and Bs define linear maps of CR(Q) to CR(Q). Note that since
erri

b = O(h2) for i = 1, 2, As(S+) ⊂ S+ and Bs(S+) ⊂ S+ for h sufficiently
small, where S+ denotes the set of nonnegative functions in CR(Q). If, for
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fixed α ≥ 0, we take f = ws, the strictly positive eigenfunction of Ls,R,α, our
construction insures that for all mesh points zi,j ∈ Dh,

(Asws)(zi,j) ≤ (Ls,R,αws)(zi,j) = r(Ls,R,α)ws(zi,j) ≤ (Bsws)(zi,j).

Lemma 2.2 now implies that

r(As) ≤ r(Ls,R,α) ≤ r(Bs). (3.13)

If B is finite, so α = 0 and Ls,R = Ls, (3.13) gives an estimate for r(Ls) in
terms of the spectral radii of finite dimensional linear maps As and Bs. If B
is infinite and R > 0 has been chosen and ηs,R and δs,R have been estimated
as in Theorems 5.12 and 5.13, we take α = ηs,R in (3.10) and define As as
in (3.10) and we obtain, using Theorem 3.3,

r(As) ≤ r(Ls,R−) ≤ r(Ls). (3.14)

Taking α = δs,R in (3.11), we define Bs as in (3.11) to obtain

r(Ls) ≤ r(Ls,R+) ≤ r(Bs). (3.15)

As a practical matter, it remains to describe the linear maps As and
Bs as matrices. For simplicity, we totally order the elements of Q by the
dictionary ordering, i.e., zi,j < zp,q if and only if i < p or if i = p and j < q.
Then we can identify f ∈ CR(Q) with a column vector (f1, . . . , fk, . . . , fn)T ,
where f(zi,j) := fk if zi,j is the kth element when the mesh points in Dh

are ordered as above and n is the total number of mesh points in Dh, Since
f(θb(z)) is a linear combination of four components of f , the mesh point
zi,j will produce row k of the matrix As (and similarly for Bs). A more
detailed description of this procedure can be found in [13] for a simpler one
dimensional problem. Since As and Bs are just representations of the linear
maps As and Bs, we can replace r(As) by r(As) in (3.14) and r(Bs) by r(Bs)
in (3.15). Thus, we can restate (3.14) and (3.15) in terms of the spectral radii
of the matrices As and Bs, which better conforms to the description in Sect. 1:

r(As) ≤ r(Ls) ≤ r(Bs).

As described in Sect. 1, if s∗ denotes the unique value of s such that
r(Ls∗) = λs∗ = 1, then s∗ is the Hausdorff dimension of the invariant set
under study. Hence, if we can find a number s1 such that r(Bs1) ≤ 1, then
r(Ls1) ≤ r(Bs1) ≤ 1, and we can conclude that s∗ ≤ s1. Analogously, if we
can find a number s2 such that r(As2) ≥ 1, then r(Ls2) ≥ r(As2) ≥ 1, and we
can conclude that s∗ ≥ s2. By choosing the mesh sufficiently fine and both
r(Bs1) and r(As2) very close to one, we can make s1 − s2 small, providing
a good estimate for s∗. As noted in Sect. 1, since the map s �→ r(Ls,R,α)
is log convex, we can find the desired values of s1 and s2 by using a slight
modification of the secant method applied to finding zeros of the functions
log[r(As2)] and log[r(Bs2)]. We also note that since the matrices As and Bs

will have a single dominant eigenvalue, (see Sect. 6 of this paper and Section
7 of [13]), the spectral radius is easily computed by a variant of the power
method (in fact, our computer codes simply call the Matlab routine eigs).
Indeed, the same program also gives high order approximations to the strictly
positive eigenvectors associated to r(As) and r(Bs).
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Table 1. Computation of Hausdorff dimension s for several
values of h and R (rounded to 5 decimal places)

Set h R Lower s Upper s

I1 .02 100 1.85516 1.85608
I1 .01 100 1.85563 1.85594
I1 .005 100 1.85574 1.85590
I1 .02 200 1.85521 1.85604
I1 .01 200 1.85568 1.85589
I1 .02 300 1.85522 1.85603
I2 .02 100 1.48883 1.49010
I2 .01 100 1.48904 1.49003
I2 .005 100 1.48909 1.49002
I2 .02 200 1.48925 1.48985
I2 .01 200 1.48946 1.48978
I2 .02 300 1.48933 1.48981
I3 .02 1.53706 1.53790
I3 .01 1.53754 1.53774
I3 .005 1.53765 1.53770

By our remarks above, it only remains to use our estimates for ηs,R and
δs,R in (3.8) and (3.9) when B is infinite, since then we will have the matrices
As and Bs.

In Table 1, we present the computation of upper and lower bounds
for the Hausdorff dimension of the invariant sets associated to B = I1, I2,
and I3. In the table, we study the effects of decreasing the mesh size h and
increasing the value of R, which corresponds to only including terms in the
sum for which |b| ≤ R. Each row in the table gives upper and lower bounds,
and for R fixed, one can see that the lower bounds are increasing and the
upper bounds decreasing as h is decreased. Similarly, taking a larger value
of R improves the bounds for the same mesh size. Except for possible round
off error in these calculations, which we do not expect to affect the results
for the number of decimal places shown, our theorems prove that these are
in fact upper and lower bounds for the actual Hausdorff dimension.

Remark 3.1. It is important to note that, given s1 and s2, Bs1 and As2

are, modulo roundoff errors in computation, known exactly. Furthermore,
our computer program furnishes (purported) strictly positive eigenvectors
ws1 for Bs1 and us2 for As2 , with respective eigenvalues r(Bs1) < 1 and
r(As2) > 1. However, we do not need to know whether ws1 and us2 are
actually eigenvectors. It suffices to verify that

Bs1ws1 ≤ ws1 and As2us2 ≥ us2 , (3.16)

since then Lemma 2.2 implies that r(Bs1) ≤ 1 and r(As2) ≥ 1, and we obtain
that s2 ≤ s∗ ≤ s1. The vectors us2 and ws1 are given to us exactly by the
program. We have verified (3.16) to high accuracy, but we have not used
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interval arithmetic. If we had used interval arithmetic to calculate Bs1 , As2 ,
and to verify (3.16), the estimates in Table 1 would be completely rigorous.
It is in that sense that we list the following result as a theorem.

Theorem 3.5. The Hausdorff dimensions of the invariant sets associated to
B = I1, I2, and I3 satisfy the bounds

I1 : 1.85574 ≤ s ≤ 1.85589, I2 : 1.48946 ≤ s ≤ 1.48978,

I3 : 1.53765 ≤ s ≤ 1.53770.

3.3. Higher Order Approximation

Although the theory developed in this paper does not apply to higher order
piecewise polynomial approximation, since one cannot guarantee that the
approximate matrices have nonnegative entries, we also report in Tables 2
and 3 the results of higher order piecewise polynomial approximation to
demonstrate the promise of this approach. In this case, we only provide the
results for the approximate matrix, which does not contain any corrections
for the interpolation error.

Since we did not have an exact solution for the problem corresponding
to the set I3, we cannot compare the actual errors. However, assuming the
last entry in Table 2 gives the most accurate approximation, we see that the
third entry using piecewise cubics is accurate to 10 decimal places, which is
a significant improvement over the last entry for linear approximation, which
only produces 5 correct digits after the decimal point. This is consistent with
the theory of approximation of smooth functions by piecewise polynomials,
which shows that the convergence rate grows as the degree of the polynomials
is increased. In the computations shown using higher order piecewise poly-
nomials, to get a fair comparison, we have adjusted the mesh sizes so that
the results for different degree piecewise polynomials will have approximately
the same number of degrees of freedom (DOF).

Table 2. Computation of Hausdorff dimension s of the set
I3 using higher order piecewise polynomials

Degree h # DOF s

1 0.02 1098 1.537729111247678
1 0.01 4165 1.537694920731214
1 0.005 16201 1.537686565250360
2 0.041667 1041 1.537683708302400
2 0.020833 3913 1.537683729607203
2 0.010417 15089 1.537683732415111
3 0.0625 1081 1.537683753797206
3 0.03125 3997 1.537683734167568
3 0.015625 15283 1.537683732983929
3 0.0078125 59545 1.537683732912027
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In a future paper we hope to prove that rigorous upper and lower bounds
for the Hausdorff dimension can also be obtained when higher order piecewise
polynomial approximations are used.

3.4. A Special Example with a Known Solution

To further test the algorithm, especially using higher order piecewise polyno-
mials, we constructed a special example where the exact solution is known.
More specifically, we considered the operator

(Ls(f))(z) =
∑

b∈B
gs

b(z)f(θb(z)),

where B = {1 ± i, 2 ± i, 3 ± i} and

gb(z) =
1
6

∣∣∣
z + b + 1

z + b

∣∣∣
2∣∣∣

1
z + 1

∣∣∣
2

.

This example is constructed so that f(z) = |1/(z + 1)|2 is an eigenfunction
of L1 with eigenvalue λ = 1 for s = 1. In Table 3, we present the results
of approximations using different values of h and different degree piecewise
polynomials.

4. Existence of Cm Positive Eigenfunctions

In this section we shall describe some results concerning existence of Cm pos-
itive eigenfunctions for a class of positive (in the sense of order-preserving)
linear operators. We shall later indicate how one can often obtain explicit
bounds on partial derivatives of the positive eigenfunctions. As noted above,
such estimates play a crucial role in our numerical method and therefore in
obtaining rigorous estimates of Hausdorff dimension for invariant sets asso-
ciated with iterated function systems.

The starting point of our analysis is Theorem 5.5 in [43], which we
now describe for a simple case. If H is a bounded open subset of R

n and

Table 3. Approximation, using higher order piecewise
polynomials, of the number s = 1 for which r(Ls) = 1 for
the special example

Degree h # DOF s

1 0.02 1098 1.000034749616189
1 0.01 4165 1.000010815423902
1 0.005 16201 1.000002596942892
2 0.02 4239 1.000000016815596
2 0.01 16357 0.999999997912829
3 0.02 9424 1.000000000610834
4 0.04167 4017 0.999999999999715
4 0.02 16653 0.999999999999925
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m is a positive integer, Cm
C

(H̄) will denote the set of complex-valued Cm

maps f : H → C such that all partial derivatives Dαf with |α| ≤ m extend
continuously to H̄. (Here α = (α1, . . . , αn) is a multi-index with αj ≥ 0 for all
j, Dj = ∂/∂xj for 1 ≤ j ≤ n and Dα = Dα1

1 · · · Dαn
n ), Cm

C
(H̄) is a complex

Banach space with ‖f‖ = sup{|Dαf(x)| : x ∈ H, |α| ≤ m}. Analogously,
Cm

R
(H̄) denotes the corresponding real Banach space of real-valued Cm maps

f : H → R.
We say that H is mildly regular if there exist η > 0 and M ≥ 1 such

that whenever x, y ∈ H and ‖x − y‖ < η, there exists a Lipschitz map
ψ : [0, 1] → H with ψ(0) = x, ψ(1) = y and

∫ 1

0

‖ψ′(t)‖ dt ≤ M‖x − y‖. (4.1)

(Here ‖·‖ denotes any fixed norm on R
n. If the norm is changed, (4.1) remains

valid, but with a different constant M .)
Let B denote a finite index set with |B| = p. For b ∈ B, we assume

(H4.1) gb ∈ Cm
R

(H̄) for all b ∈ B and gb(x) > 0 for all x ∈ H̄ and all b ∈ B.

(H4.2) θb : H → H is a Cm map for all b ∈ B, i.e., if

θb(x) = (θb1(x), . . . θbn
(x)), then θbk

∈ Cm
R

(H̄) for all b ∈ B
and for 1 ≤ k ≤ n.

In (H4.1) and (H4.2), we always assume that m ≥ 1.
We define a bounded, complex linear map Λ : Cm

C
(H̄) → Cm

C
(H̄) by

(Λ(f))(x) =
∑

b∈B

gb(x)f(θb(x)). (4.2)

Equation (4.2) also defines a bounded real linear map of Cm
R

(H̄) to itself
which we shall also denote by Λ.

For integers μ ≥ 1, we define Bμ := {ω = (j1, . . . jμ) : jk ∈ B for 1 ≤
k ≤ μ}. For ω = (j1, . . . jμ) ∈ Bμ, we define ωμ = ω, ωμ−1 = (j1, . . . jμ−1),
ωμ−2 = (j1, . . . jμ−2), · · · , ω1 = j1. We define

θωμ−k
(x) = (θjμ−k

◦ θjμ−k−1 ◦ · · · ◦ θj1)(x),

so
θω(x) := θωμ

(x) = (θjμ
◦ θjμ−1 ◦ · · · ◦ θj1)(x).

For ω ∈ Bμ, we define gω(x) inductively by gω(x) = gj1(x) if ω =
(j1) ∈ B := B1, gω(x) = gj2(θj1(x))gj1(x) if ω = (j1, j2) ∈ B2 and, for
ω = (j1, j2, . . . jμ) ∈ Bμ,

gω(x) = gjμ
(θωμ−1(x))gωμ−1(x).

If is not hard to show (see [3,40,43]) that

(Λμ(f))(x) =
∑

ω∈Bμ

gω(x)f(θω(x)). (4.3)

If Λ and m are as above, we shall let σ(Λ) ⊂ C denote the spectrum of
Λ. If all the functions gj and θj are CN , then we can consider Λ as a bounded
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linear operator Λm : Cm
C

(H̄) → Cm
C

(H̄) for 1 ≤ m ≤ N , but one should note
that in general σ(Λm) will depend on m.

To obtain a useful theory for Λ, we need a further crucial assumption.
For a given norm ‖ · ‖ on R

n, we assume
(H4.3) There exists a positive integer μ and a constant κ < 1 such that

for all ω ∈ Bμ and all x, y ∈ H,

‖θω(x) − θω(y)‖ ≤ κ‖x − y‖.

If we define c = κ1/μ < 1, it follows from (H4.3) that there exists a
constant M such that for all ω ∈ Bν and all ν ≥ 1,

‖θω(x) − θω(y)‖ ≤ Mcν‖x − y‖ ∀x, y ∈ H. (4.4)

If the norm ‖ · ‖ in (4.4) is replaced by a different norm | · |, (4.4) remains
valid, although with a different constant M . This in turn implies that (H4.3)
will also be valid with the same constant κ, with | · | replacing ‖ · ‖ and with
a possibly different integer μ.

The following theorem is a special case of Theorem 5.5 in [43].

Theorem 4.1. Let H be a bounded open subset of Rn and assume that H is
mildly regular. Let X = Cm

C
(H̄) and assume that (H4.1), (H4.2), and (H4.3)

are satisfied (where m ≥ 1 in (H4.1) and (H4.2)) and that Λ : X → X is
given by (4.2). If Y = CC(H̄), the Banach space of complex-valued continuous
functions f : H̄ → C and L : Y → Y is defined by (4.2), then r(L) =
r(Λ) > 0, where r(L) denotes the spectral radius of L and r(Λ) denotes the
spectral radius of Λ. If ρ(Λ) denotes the essential spectral radius of Λ (see
[34,40,41,44]), then ρ(Λ) ≤ cmr(Λ) where c = κ1/μ is as in (4.4). There
exists v ∈ X such that v(x) > 0 for all x ∈ H̄ and

Λ(v) = rv, r = r(Λ).

There exists r1 < r such that if ξ ∈ σ(Λ) \ {r}, then |ξ| ≤ r1; and r = r(Λ)
is an isolated point of σ(Λ) and an eigenvalue of algebraic multiplicity 1. If
u ∈ X and u(x) > 0∀x ∈ H̄, there exists a real number su > 0 such that

lim
k→∞

(
1
r
Λ

)k

(u) = suv, (4.5)

where the convergence in (4.5) is in the Cm topology on X.

Remark 4.1. If α is a multi-index with |α| ≤ m, where m ≥ 1 is as in (H4.1)
and (H4.2), it follows from (4.5) that

lim
k→∞

(
1
r

)k

DαΛk(u) = suDαv, (4.6)

and

lim
k→∞

(
1
r

)k

Λk(u) = suv, (4.7)

where the convergence in (4.6) and (4.7) is in the topology of CC(H̄), the
Banach space of continuous functions f : H̄ → C.
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It follows from (4.6) and (4.7) that for any multi-index α with |α| ≤ m,

lim
k→∞

(DαΛk(u))(x)
Λk(u)(x)

=
(Dα(v))(x)

v(x)
, (4.8)

where the convergence in (4.8) is uniform in x ∈ H̄. If we choose u(x) = 1
for all x ∈ H̄, it follows from (4.3) that for all multi-indices α with |α| ≤ m,
we have

lim
k→∞

Dα(
∑

ω∈Bk
gω(x))

∑
ω∈Bk

gω(x)
=

Dαv(x)
v(x)

, (4.9)

where the convergence in (4.9) is uniform in x ∈ H̄. We shall use (4.9) in our
further work to obtain explicit bounds on sup

{|Dαv(x)|/v(x) : x ∈ H̄
}
.

Direct analogues of Theorem 5.5 in [43] exist when B is countable but
not finite (e.g., see [37,40]), but such analogues were not stated or proved
in [43]. We shall make do here with less precise theorems which we shall
prove by an ad hoc argument in the next section. We refer to Lemma 5.3 in
Section 5 of [44], Theorem 5.3 on p. 86 of [40] and Section 5 of [40] for more
information about existence of positive eigenfunctions when B is infinite.

5. The Case of Möbius Transformations

By working with partial derivatives and using methods like those in Section
5 of [13], it is possible to obtain explicit estimates on partial derivatives of
vs(x) in the generality of Theorem 4.1. However, for reasons of length and
in view of the immediate applications in this paper, we shall not treat the
general case here and shall now specialize to the case that the mappings θb(·)
are given by Möbius transformations which map a given bounded open subset
H of C := R

2 into H. Specifically, throughout this section we shall usually
assume:
(H5.1): γ ≥ 1 is a given real number and B is a finite collection of complex
numbers b such that Re(b) ≥ γ for all b ∈ B. For each b ∈ B, θb(z) := 1/(z+b)
for z ∈ C \ {−b}.

The assumption in (H5.1) that γ ≥ 1 is only a convenience; and the
results of this section can be proved under the weaker assumption that γ > 0.

For γ > 0 we define Gγ ∈ C by

Gγ = {z ∈ C : |z − 1/(2γ)| < 1/(2γ)}. (5.1)

It is easy to check that if w ∈ C and Re(w) > γ, then (1/w) ∈ Gγ . It follows
that if Re(z) > 0, b ∈ C and Re(b) ≥ γ > 0, then θb(z) ∈ Ḡγ . Let H be
a bounded, open, mildly regular subset of C = R

2 such that H ⊃ Gγ and
H ⊂ {z : Re(z) > 0}, and let B denote a finite set of complex numbers
such that Re(b) ≥ γ > 0 for all b ∈ B. We define a bounded linear map
Λs : Cm

C
(H̄) → Cm

C
(H̄), where m is a positive integer and s ≥ 0, by

(Λs(f))(z) =
∑

b∈B

∣∣∣
d

dz
θb(z)

∣∣∣
s

f(θb(z)) :=
∑

b∈B

1
|z + b|2s

f(θb(z)). (5.2)

As in Sect. 1, Ls : CC(H̄) → CC(H̄) is defined by (5.2). We use different
letters to emphasize that σ(Λs) 
= σ(Ls), although r(Λs) = r(Ls).
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If all elements of B are real, we can restrict attention to the real line and,
as we shall see, the analysis is much simpler. In this case we abuse notation
and take Gγ = (0, 1/γ) ⊂ R

2 and H = (0, a), a ≥ 1/γ. For f ∈ Cm
C

(H̄) and
x ∈ H̄, (5.2) takes the form

(Λs(f))(x) =
∑

b∈B

1
(x + b)2s

f(θb(x)).

If, for 1 ≤ j ≤ n, Mj =
( aj bj

cj dj

)
is a 2 × 2 matrix with complex entries

and det(Mj) = ajdj − bjcj 
= 0, define a Möbius transformation ψj(z) =
(ajz + bj)/(cjz + dj). It is well-known that

(ψ1 ◦ ψ2 ◦ · · · ◦ ψn)(z) = (Anz + Bn)/(Cnz + Dn), (5.3)

where (
An Bn

Cn Dn

)
= M1M2 · · · Mn. (5.4)

If B is a finite set of complex numbers b such that Re(b) ≥ γ > 0 for all
b ∈ B, we define Bν as before by

Bν = {ω = (b1, b2, . . . , bν) : bj ∈ B for 1 ≤ j ≤ ν}
and θω = θbn

◦ θbn−1 · · · ◦ θb1 . Given ω = (b1, b2, . . . , bν) ∈ Bν , we define

ω̃ = (bν , bν−1, . . . , b1) (5.5)

so
θω̃ = θb1 ◦ θb2 · · · ◦ θbn

. (5.6)
For Λs as in (5.2) ν ≥ 1, and f ∈ Cm

C
(H̄), recall that

(Λν
s (f))(z) =

∑

ω∈Bν

∣∣∣
dθω(z)

dz

∣∣∣
s

f(θω(z)) =
∑

ω∈Bν

∣∣∣
dθω̃(z)

dz

∣∣∣
s

f(θω̃(z)).

The following lemma allows us to apply Theorem 4.1 to Λs in (5.2).

Lemma 5.1. Let b1 and b2 be complex numbers with Re(bj) ≥ γ ≥ 1 for
j = 1, 2. If ψj(z) = 1/(z + bj) for Re(z) ≥ 0 and θ = ψ1 ◦ ψ2, then for all
z, w with Re(z) ≥ 0 and Re(w) ≥ 0,

|θ(z) − θ(w)| ≤ (γ2 + 1)−2|z − w|.
Proof. It suffices to prove that |(dθ/dz)(z)| ≤ (γ2 + 1)−2 for all z ∈ C with
Re(z) ≥ 0. Using (5.3) and (5.4) we see that

|(dθ/dz)(z)| = |b1|−2|z + (1/b1) + b2|−2,

so it suffices to prove that |b1|2 |z + (1/b1) + b2|2 ≥ (γ2 + 1)2 for Re(z) ≥ 0.
If we write b1 = u + iv with u ≥ γ,

Re(z + (1/b1) + b2) ≥ u/(u2 + v2) + γ,

so
|z + (1/b1) + b2|2 ≥ [u/(u2 + v2) + γ]2

and
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|b1|2 |z + (1/b1) + b2|2 ≥ (u2 + v2)
[ u2

(u2 + v2)2
+

2uγ

(u2 + v2)
+ γ2

]

=
u2

(u2 + v2)
+ 2uγ + γ2(u2 + v2) = g(u, v).

Because u ≥ γ, g(u, 0) = 1 + 2γ2 + γ4 = (γ2 + 1)2. Using the fact that
u ≥ γ ≥ 1, we also see that for v ≥ 0

∂g(u, v)
∂v

=
−u2(2v)

(u2 + v2)2
+ 2γ2v ≥ 0,

which implies that g(u, v) ≥ g(u, 0) = (γ2 + 1)2 for u ≥ γ and v ≥ 0. Since
g(u,−v) = g(u, v), g(u, v) ≥ (γ2 + 1)2 for v ≤ 0 and u ≥ γ. �

With the aid of Lemma 5.1, the following theorem is an immediate
corollary of Theorem 4.1.

Theorem 5.2. Assume (H5.1) and let H be a bounded, open mildly regular
subset of {z ∈ C : Re(z) > 0} such that H ⊃ Gγ , where Gγ is defined by
(5.1). For a given positive integer m and for s > 0, let X = Cm

C
(H̄) and

Y = CC(H̄) and let Λs : X → X and Ls : Y → Y be given by (5.2). If r(Λs)
(respectively, r(Ls)) denotes the spectral radius of Λs (respectively, Ls), we
have r(Λs) > 0 and r(Λs) = r(Ls). If ρ(Λs) denotes the essential spectral
radius of Λs,

ρ(Λs) ≤ (γ2 + 1)−mr(Λs).

For each s > 0, there exists vs ∈ X such that vs(z) > 0 for all z ∈ H̄ and
Λs(vs) = r(Λs)vs. All the statements of Theorem 4.1 are true in this context
whenever Λ and L in Theorem 4.1 are replaced by Λs and Ls respectively.

In the notation of Theorem 5.2, it follows from (4.9) that for any multi-
index α = (α1, α2) with α1 + α2 ≤ m and for z = x + iy = (x, y)

lim
ν→∞

Dα
(∑

ω∈Bν

∣∣∣ d
dz θω(z)

∣∣∣
s)

∑
ω∈Bν

∣∣∣ d
dz θω(z)

∣∣∣
s =

Dαvs(x, y)
vs(x, y)

, (5.7)

where Dα = (∂/∂x)α1(∂/∂y)α2 and the convergence is uniform in (x, y) :=
z ∈ H̄.

Lemma 5.3. Let bj, j ≥ 1 be a sequence of complex numbers with Re(bj) ≥
γ > 0 for all j. For complex numbers z, define θbj

(z) = (z + bj)−1 and define
matrices Mj =

(
0 1
1 bj

)
. Then for n ≥ 1,

M1M2 · · · Mn =
(

An−1 An

Bn−1 Bn

)
, (5.8)

where A0 = 0, A1 = 1, B0 = 1, B1 = b1 and for n ≥ 1,

An+1 = An−1 + bn+1An and Bn+1 = Bn−1 + bn+1Bn. (5.9)

Also,
(θb1 ◦ θb2 · · · ◦ θbn

)(z) = (An−1z + An)/(Bn−1z + Bn),
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and we have
Re(Bn/Bn−1) ≥ γ (5.10)

and ∣∣∣
d

dz

[An−1z + An

Bn−1z + Bn

]∣∣∣
s

= |Bn−1|−2s|z + Bn/Bn−1|−2s. (5.11)

Proof. Equation (5.8) follows by induction on n. It is obviously true for n = 1.
If we assume that (5.8) is satisfied for some n ≥ 1, then

M1M2 · · · MnMn+1 =

(
An−1 An

Bn−1 Bn

) (
0 1
1 bn+1

)
=

(
An An−1 + bn+1An

Bn Bn−1 + bn+1Bn

)
,

which proves (5.8) with An+1 and Bn+1 defined by (5.9). Similarly, we prove
(5.10) by induction on n. The case n = 1 is obvious, Assuming that (5.9) is
satisfied for some n ≥ 1, we obtain from (5.9) that

Bn+1/Bn = Bn−1/Bn + bn+1.

Because Re(w) ≥ γ, where w := Bn/Bn−1, we see that |1/w − 1/(2γ)| ≤
1/(2γ) and Re(1/w) = Re(Bn−1/Bn) ≥ 0, so

Re(Bn+1/Bn) ≥ Re(Bn−1/Bn) + Re(bn+1) ≥ γ.

Hence (5.9) is satisfied for all n ≥ 1. Because det(Mj) = −1 for all j ≥ 1, we
get that det

( An−1 An

Bn−1 Bn

)
= (−1)n, and (5.11) follows. �

Before proceeding further, it will be convenient to establish some ele-
mentary calculus propositions. For (u, v) ∈ R

2 \ {(0, 0)} and s > 0, define

G(u, v; s) = (u2 + v2)−s.

Define D1 = (∂/∂u), so Dm
1 = (∂/∂u)m for positive integers m; similarly, let

D2 = (∂/∂v) and Dm
2 = (∂/∂v)m.

Lemma 5.4. For positive integers m, there exist polynomials in u and v with
coefficients depending on s, Pm(u, v; s) and Qm(u, v; s), such that

Dm
1 G(u, v; s) = Pm(u, v; s)G(u, v; s + m),

Dm
2 G(u, v; s) = Qm(u, v; s)G(u, v; s + m).

Furthermore, we have P1(u, v; s) = −2su, Q1(u, v; s) = −2sv, and for posi-
tive integers m,

Pm+1(u, v; s) = (u2 + v2)(D1Pm(u, v; s)) − 2(s + m)uPm(u, v; s)

and

Qm+1(u, v; s) = (u2 + v2)(D2Qm(u, v; s)) − 2(s + m)vQm(u, v; s).

Proof. If m = 1,

D1G(u, v; s) = (−2su)G(u, v; s+1), D2G(u, v; s) = (−2sv)(u2+v2; s+1),

so P1(u, v; s) = −2su and Q1(u, v; s) = −2sv.
We now argue by induction and assume we have proved the existence

of Pj(u, v; s) and Qj(u, v; s) for 1 ≤ j ≤ m. It follows that
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Dm+1
1 G(u, v; s) = D1[Pm(u, v; s)G(u, v; s + m)]

= [D1Pm(u, v; s)]G(u, v; s + m)]
+Pm(u, v; s)[−2(s + m)u]G(u, v; s + m + 1)

= [(u2 + v2)(D1Pm(u, v; s))
− 2(s + m)uPm(u, v; s)]G(u, v; s + m + 1).

This proves the lemma with

Pm+1(u, v; s) := (u2 + v2)(D1Pm(u, v; s)) − 2(s + m)uPm(u, v; s).

An exactly analogous argument, which we leave to the reader, shows that

Qm+1(u, v; s) := (u2 + v2)(D2Qm(u, v; s)) − 2(s + m)vQm(u, v; s). �

An advantage of working with Möbius transformations is that one can
easily obtain tractable formulas for expressions like (θb1 ◦θb2 · · ·◦θbn

)(z). Such
formulas allow more precise estimates for the left hand side of (4.9) than we
obtained in Section 5 of [13].

Lemma 5.5. In the notation of Lemma 5.4, for all (u, v) ∈ R
2 \ {(0, 0)}, for

all s > 0, and all positive integers m, Pm(u, v; s) = Qm(v, u; s).

Proof. Fix s > 0. We have P1(u, v; s) = Q1(v, u; s) for all (u, v) 
= (0, 0).
Arguing by mathematical induction, assume that for some positive integer m
we have proved that Pm(u, v; s) = Qm(v, u; s) for all (u, v) 
= (0, 0). For a fixed
(u, v) 
= (0, 0), we obtain, by virtue of the recursion formula in Lemma 5.4,

Pm+1(v, u; s) = (u2 + v2) lim
Δv→0

Pm(v + Δv, u; s) − Pm(v, u; s)
Δv

− 2(s + m)vPm(v, u; s)

= (u2 + v2) lim
Δv→0

Qm(u, v + Δv; s) − Qm(u, v; s)
Δv

− 2(s + m)vQm(u, v; s)

= Qm+1(u, v; s).

By mathematical induction, we conclude that Pn(u, v; s) = Qn(v, u; s) for all
positive integers n. �

Remark 5.1. By using the recursion formula in Lemma 5.4, one can easily
compute Pj(u, v; s) for 1 ≤ j ≤ 4.

P1(u, v; s) = −2su,

P2(u, v; s) = 2s(2s + 1)u2 − 2sv2,

P3(u, v; s) = −2s(2s + 1)(2s + 2)u3 + (2s)(2s + 2)(3)uv2,

P4(u, v; s) = (2s)(2s + 2)[(2s + 1)(2s + 3)u4 − 6(2s + 3)u2v2 + 3v4].

By virtue of Lemma 5.5, we also obtain formulas for Qj(v, u; s) =
Pj(u, v; s). Also, Lemmas 5.4 and 5.5 imply that

Dj
1G(u, v; s)
G(u, v; s)

=
Pj(u, v; s)
(u2 + v2)j

,
Dj

2G(u, v; s)
G(u, v; s)

=
Pj(v, u; s)
(u2 + v2)j
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and the latter formulas will play a useful role in this section. In particular,
for a given constant γ > 0, we shall need good estimates for

sup
{Dj

kG(u, v; s)
G(u, v; s)

: u ≥ γ, v ∈ R

}
and inf

{Dj
kG(u, v; s)
G(u, v; s)

: u ≥ γ, v ∈ R

}

where k = 1, 2 and 1 ≤ j ≤ 4. Although the arguments used to prove these
estimates are elementary, these results will play a crucial role in our later
work.

Lemma 5.6. Let γ > 0 be a given constant and assume that u ≥ γ and v ∈ R.
Let D1 = (∂/∂u) and G(u, v; s) = (u2 + v2)−s, where s > 0. For j ≥ 1 we
have

Dj
1G(u, v; s)
G(u, v; s)

=
Pj(u, v; s)
(u2 + v2)j

,

where Pj(u, v; s) is as defined in Remark 5.1; and the following estimates are
satisfied.

−2s

γ
≤ D1G(u, v; s)

G(u, v; s)
< 0,

− s

4γ2(s + 1)
≤ D2

1G(u, v; s)
G(u, v; s)

≤ 2s(2s + 1)
γ2

,

−2s(2s + 1)(2s + 2)
γ3

≤ D3
1G(u, v; s)
G(u, v; s)

≤ 2s(2s + 2)
γ3(s + 2)2

,

−2s(s + 1)(2s + 2)(3)
γ4

≤ D4
1G(u, v; s)
G(u, v; s)

≤ 2s(2s + 1)(2s + 2)(2s + 3)
γ4

.

Proof. By Remark 5.1,

Dj
1G(u, v; s)
G(u, v; s)

=
Pj(u, v; s)
(u2 + v2)j

,

and Remark 5.1 provides formulas for Pj(u, v; s). It follows that

Dj
1G(u, v; s)
G(u, v; s)

=
−2su

u2 + v2
< 0.

Since
2su

u2 + v2
≤ 2su

u2
≤ 2s

γ
,

we also see that
D1G(u, v; s)
G(u, v; s)

≥ −2s

γ
.

Using Remark 5.1, we see that

D2
1G(u, v; s)
G(u, v; s)

=
2s(2s + 1)u2 − 2sv2

(u2 + v2)2
,

so
D2

1G(u, v; s)
G(u, v; s)

≤ 2s(2s + 1)u2

(u2 + v2)2
.
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Since
u2

(u2 + v2)2
≤ u2

u4
≤ 1

γ2
,

we find that
D2

1G(u, v; s)
G(u, v; s)

≤ 2s(2s + 1)
γ2

,

If we write v2 = ρu2, we see that

D2
1G(u, v; s)
G(u, v; s)

=
2s(2s + 1 − ρ)

u2(1 + ρ)2
,

and if 0 ≤ ρ ≤ 2s + 1, we obtain the upper bound given above and a lower
bound of zero. If ρ > 2s + 1, we see that

D2
1G(u, v; s)
G(u, v; s)

≥ 2s

γ2
inf

{
2s + 1 − ρ

(1 + ρ)2
: ρ > 2s + 1

}
.

It is a simple calculus exercise to show that

inf
{

2s + 1 − ρ

(1 + ρ)2
: ρ > 2s + 1

}
= − 1

8(s + 1)
,

achieved at ρ = 4s + 3; and this gives the lower estimate −s/[4γ2(s + 1)] of
the lemma.

Using Remark 5.1 again, we see that

D3
1G(u, v; s)
G(u, v; s)

=
2s(2s + 2)u[−(2s + 1)u2 + 3v2]

(u2 + v2)3
.

It follows that

D3
1G(u, v; s)
G(u, v; s)

≥ −2s(2s + 1)(2s + 2)
[

u

(u2 + v2)

]3

≥ −2s(2s + 1)(2s + 2)
[

1
u

]3

≥ −2s(2s + 1)(2s + 2)
1
γ3

.

On the other hand, if we write v2 = ρu2, then

D3
1G(u, v; s)
G(u, v; s)

=
2s(2s + 2)

u3

[3ρ − (2s + 1)]
(1 + ρ)3

≤ 2s(2s + 2)
γ3

sup
{

3ρ − (2s + 1)
(1 + ρ)3

: ρ ≥ 0
}

.

Once again, a straightforward calculus argument shows that

sup
{

3ρ − (2s + 1)
(1 + ρ)3

: ρ ≥ 0
}

=
1

(s + 2)2

and the supremum is achieved at ρ = s + 1. Using this fact, we obtain the
upper estimate of the lemma.

Finally, we obtain from Remark 5.1 that

D4
1G(u, v; s)
G(u, v; s)

=
2s(2s + 2)[(2s + 1)(2s + 3)u4 − 6(2s + 3)u2v2 + 3v4]

(u2 + v2)4
.
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Dropping the negative term in the numerator and observing that

3 ≤ (2s + 1)(2s + 3) and u4 + v4 ≤ (u2 + v2)2,

we see that
D4

1G(u, v; s)
G(u, v; s)

≤ (2s)(2s + 1)(2s + 2)(2s + 3)(u4 + v4)
(u2 + v2)4

≤ (2s)(2s + 1)(2s + 2)(2s + 3)
(u2 + v2)2

≤ (2s)(2s + 1)(2s + 2)(2s + 3)
γ4

.

On the other hand, because −u4 − v4 ≤ −2u2v2, we obtain that

−D4
1G(u, v; s)
G(u, v; s)

≤ (2s)(2s + 2)[−3u4 + 6(2s + 3)u2v2 − 3v4]
(u2 + v2)4

≤ 3(2s)(2s + 2)[−2u2v2 + (4s + 6)u2v2]
(u2 + v2)4

≤ 3(2s)(2s + 2)[4(s + 1)(u2 + v2)2/4]
(u2 + v2)4

≤ 3(2s)(2s + 2)(s + 1)
(u2 + v2)2

≤ 3(2s)(2s + 2)(s + 1)
γ4

,

which gives the lower estimate of Lemma 5.6. �
The following lemma gives analogous estimates for

Dj
2G(u, v; s)
G(u, v; s)

=
Pj(v, u; s)
(u2 + v2)j

.

Lemma 5.7. Let γ > 0 be a given real number, D2 = (∂/∂v) and for s > 0
and (u, v) ∈ R

2 \{(0, 0)}, define G(u, v; s) = (u2 +v2)−s, If u ≥ γ and v ∈ R,
we have the following estimates.

|D2G(u, v; s)|
G(u, v; s)

≤ s

γ
,

−2s

γ2
≤ D2

2G(u, v; s)
G(u, v; s)

≤ 2s(2s + 1)
4γ2

,

|D3
2G(u, v; s)|
G(u, v; s)

≤ 2s(2s + 2)
γ3

max

{
25

√
5

72
,
2s + 1

8

}

−2s(s + 1)(2s + 2)(3)
γ4

≤ D4
2G(u, v; s)
G(u, v; s)

≤ 2s(2s + 1)(2s + 2)(2s + 3)
γ4

.

Proof. By Remark 5.1, P1(v, u; s) = −2sv, so

|D2G(u, v; s)|
G(u, v; s)

=
2s|v|

u2 + v2
.

The map w �→ w/(u2 + w2) has its maximum on [0,∞) at w = u, so
(2s|v|/(u2+v2) ≤ s/u ≤ s/γ; and we obtain the first inequality in Lemma 5.7.
Using Remark 5.1 again, we see that

D2
2G(u, v; s)
G(u, v; s)

=
2s[(2s + 1)v2 − u2]

(u2 + v2)2
.
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It follows that
D2

2G(u, v; s)
G(u, v; s)

= 2s(2s + 1)
|v|2

(u2 + v2)2
.

The map v �→ |v|/(u2 + v2) has its maximum at |v| = u, so [|v|/(u2 + v2)]2 ≤
1/(4u2) ≤ 1/(4γ2), and

D2
2G(u, v; s)
G(u, v; s)

=
2s(2s + 1)

4γ2
.

Similarly, one obtains

D2
2G(u, v; s)
G(u, v; s)

≥ − 2su2

(u2 + v2)2
≥ −2s

u2
≥ −2s

γ2
.

With the aid of Remark 5.1 again, we see that

D3
2G(u, v; s)
G(u, v; s)

= 2s(2s + 2)v
[−(2s + 1)v2 + 3u2]

(u2 + v2)3
:= A(u, v).

For a fixed u ≥ γ, v �→ A(u, v) is an odd function of v, so if α(u) =
sup{A(u, v) : v ∈ R}, −α(u) = inf{A(u, v) : v ∈ R}. If v ≤ 0,

A(u, v) ≤ (2s)(2s + 1)(2s + 2)
[ |v|
u2 + v2

]3

≤ (2s)(2s + 1)(2s + 2)
[ u

2u2

]3

≤ (2s)(2s + 1)(2s + 2)
8γ3

.

If v > 0,
A(u, v) ≤ (2s)(2s + 2)(3u2)

v

(u2 + v2)3
.

A calculation shows that v �→ v/(u2 + v2)3 achieves its maximum for v ≥ 0
at v = u/

√
5, so for v > 0,

A(u, v) ≤ (2s)(2s + 2)(3u−3)[
√

5(6/5)3]−1 ≤ (2s)(2s + 2)γ−3(25
√

5/72).

Note that 25
√

5/72 ≈ .7764 < 1. Using Remark 5.1 again, we see that

D4
2G(u, v; s)
G(u, v; s)

= 2s(2s + 2)
[(2s + 1)(2s + 3)v4 − 6(2s + 3)u2v2 + 3u4]

(u2 + v2)4
.

Since u4 + v4 ≤ (u2 + v2)2, it follows easily that

D4
2G(u, v; s)
G(u, v; s)

≤ 2s(2s + 2)(2s + 1)(2s + 3)
u4 + v4

(u2 + v2)4

≤ 2s(2s + 2)(2s + 1)(2s + 3)γ−4.

Similarly, we see that

(2s + 1)(2s + 3)v4 − 6(2s + 3)u2v2 + 3u4 ≥ 3(u4 + v4) − 6(2s + 3)[(u2 + v2)/2]2

≥ 3(u2 + v2)2 − 6[(u2 + v2)/2]2 − 6(2s + 3)[(u2 + v2)/2]2.

This implies that

D4
2G(u, v; s)

G(u, v; s)
≥ 2s(2s + 2)

3 − 3/2 − 3/2(2s + 3)

(u2 + v2)2

≥ −(2s)(2s + 2)3(s + 1)(u2 + v2)−2 ≥ −(2s)(2s + 2)(3s + 3)γ−4,
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which completes the proof of Lemma 5.7. Note that (2s)(2s+1)(2s+2)(2s+
3) ≥ 2s(2s + 2)(3s + 3). �

Remark 5.2. Lemmas 5.6 and 5.7 show that whenever u ≥ γ > 0, s > 0,
k = 1 or k = 2, and 1 ≤ j ≤ 4,

|Dj
kG(u, v; s)|
G(u, v; s)

≤ (2s)(2s + 1) · · · (2s + j − 1)γ−j .

We have not determined whether the above inequality holds for all j ≥ 1.

Using Lemmas 5.6 and 5.7, we can give uniform estimates for the quan-
tities (∂/∂x)jvs(x, y)/vs(x, y) and (∂/∂y)jvs(x, y)/vs(x, y), where s > 0,
1 ≤ j ≤ 4, and vs(x, y) is the unique (to within normalization) strictly
positive eigenfunction of the linear operator Λs : Cm

C
(H̄) → Cm

C
(H̄) in (5.2)

for m ≥ 1.

Theorem 5.8. Let s denote a positive real and let B and θb, b ∈ B, be as in
(H5.1). Let H be a bounded, mildly regular open subset of C := R

2 such that
H ⊃ Gγ = {z ∈ C : |z − 1/(2γ)| < 1/(2γ)}, and Re(z) > 0 for all z ∈ H, so
θb(H) ⊂ Gγ for all b ∈ B. For a positive integer m, define a complex Banach
space Cm

C
(H̄) = X and let Λs : X → X be defined as in (5.2). Then Λs has a

unique (to within normalization) strictly positive eigenfunction vs ∈ X and
vs ∈ C∞. Furthermore, we have the following estimates for (x, y) ∈ H̄.

− 2s

γ
≤ ∂vs(x, y)

∂x
[vs(x, y)]−1 ≤ 0, (5.12)

− s

4γ2(s + 1)
≤ ∂2vs(x, y)

∂x2
[vs(x, y)]−1 ≤ 2s(2s + 1)

γ2
, (5.13)

−2s(2s + 1)(2s + 2)
γ3

≤ ∂3vs(x, y)
∂x3

[vs(x, y)]−1 ≤ (2s)(2s + 2)
γ3(s + 2)2

, (5.14)

−2s(2s + 2)(3s + 3)
γ4

≤ ∂4vs(x, y)
∂x4

[vs(x, y)]−1

≤ (2s)(2s + 1)(2s + 2)(2s + 3)
γ4

, (5.15)

∣∣∣
∂vs(x, y)

∂y

∣∣∣[vs(x, y)]−1 ≤ s

γ
, (5.16)

−2s

γ2
≤ ∂2vs(x, y)

∂y2
[vs(x, y)]−1 ≤ 2s(2s + 1)

4γ2
, (5.17)

∣∣∣
∂3vs(x, y)

∂y3

∣∣∣[vs(x, y)]−1 ≤ (2s)(2s + 2)
γ3

max{25
√

5/72, (2s + 1)/8}, (5.18)

−2s(2s + 2)(3s + 3)
γ4

≤ ∂4vs(x, y)
∂y4

[vs(x, y)]−1

≤ (2s)(2s + 1)(2s + 2)(2s + 3)
γ4

. (5.19)
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Hence, if D1 = ∂/∂x and D2 = ∂/∂y, we have for k = 1, 2 and 1 ≤ j ≤ 4
that

|Dj
kvs(x, y)|
vs(x, y)

≤ (2s)(2s + 1) · · · (2s + j − 1)
γj

. (5.20)

Proof. For any integer m ≥ 1, we can view Λs as a bounded linear operator
of Cm

C
(H̄) to Cm

C
(H̄). We know that Λs has a strictly positive eigenfunction

vs(x, y) ∈ Cm
C

(H̄) such that sup{vs(x, y) : (x, y) ∈ H̄} = 1. By the uniqueness
of this eigenfunction, vs(x, y) must actually be C∞.

Using the notation of (5.5) and (5.6) and also using (5.11) in Lemma 5.3,
we see that ∣∣∣

d

dz
θω̃(z)

∣∣∣
s

= |Bn−1|−2s|z + Bn/Bn−1|−2s.

By Lemma 5.3, Re(Bn/Bn−1) ≥ γω ≥ γ, so writing Im(Bn/Bn−1) = δω, we
obtain that for k = 1, 2 and 1 ≤ j,

Dj
k

(∣∣∣
d

dz
θω̃(z)

∣∣∣
s
) ∣∣∣

d

dz
θω̃(z)

∣∣∣
s

=
(
Dj

k

[
(x + γω)2 + (y + δω)2

]−s)[
(x + γω)2 + (y + δω)2

]s

. (5.21)

However, if we write (x + γω) = u ≥ γ and (y + δω) = v, we see that
(( ∂

∂x

)j[
(x + γω)2 + (y + δω)2

]−s
)[

(x + γω)2 + (y + δω)2
]−s

=
[( ∂

∂u

)j

G(u, v; s)
]

[G(u, v; s]−1
, (5.22)

where the right hand side of the above equation is evaluated at u = x+γω and
v = y + δω. If we combine (5.21) and (5.22) with the estimates in Lemma 5.6
and if we then use (5.7), we obtain the estimates on (∂/∂x)jvs(x, y) given in
(5.12) - (5.15).

Similarly, we have
(( ∂

∂y

)j[
(x + γω)2 + (y + δω)2

]−s
)[

(x + γω)2 + (y + δω)2
]−s

=
[( ∂

∂v

)j

G(u, v; s)
]

[G(u, v; s]−1
. (5.23)

If we combine (5.21) and (5.23) with the estimates in Lemma 5.7 and if we
then use (5.7), we obtain the estimates on (∂/∂y)jvs(x, y) given in (5.16) -
(5.19). �

Remark 5.3. Let H, B, and θb, b ∈ B, be as in Theorem 5.8 and let R and α be
positive reals such that R ≥ sup{|b|, b ∈ B}. Define θ0 : H̄ → H̄ by θ0(z) = 0
for all z ∈ H̄ and let Ls,R,α : X := Cm(H̄) → Cm(H̄) be as in (3.2) in
Sect. 3. Notice that Ls,R,α satisfies all the hypotheses of Theorem 4.1, so all
the conclusions of Theorem 4.1 hold. In particular, Ls,R,α has a unique (to
within normalization) strictly positive eigenfunction ws ∈ Cm(H̄). Because
the eigenfunction ws is unique and m ≥ 1 is arbitrary, ws ∈ Cm(H̄) for all
m ≥ 1.
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We claim that exactly the same estimates given for vs in Theorem 5.8
(i.e., (5.12) – (5.20)) also hold for ws. To see this, define an index set D =
B ∪ {0} and for z ∈ H̄, define gδ(z) = 1/|z + b|2s if δ = b ∈ B and gδ(z) = α
if δ = 0. As usual, if μ is a positive integer, let

Dμ = {ω = (δ1, δ2, . . . , δμ) : δk ∈ D for 1 ≤ k ≤ μ}.

Recall that for ω = (δ1, δ2, . . . , δμ) ∈ Dμ and ω̃ as in (5.5), our convention is
that θω̃ = θδ1 ◦ θδ2 ◦ · · · ◦ θδμ

and

gω̃(z) = gδμ
(θδμ−1 ◦ θδμ−2 ◦ · · · ◦ θδ1(z))gδμ−1(θδμ−2 ◦ θδμ−3 ◦ · · · ◦ θδ1(z))

· · · gδ2(θδ1(z))gδ1(z).

If D1 = ∂/∂x and D2 = ∂/∂y, for k ≥ 1, p = 1 or 2, and z = x+ iy := (x, y),
we know that

Dk
pws(x, y)
ws(x, y)

= lim
μ→∞

Dk
p

( ∑
ω∈Dμ

gω̃(x, y)
)

∑
ω∈Dμ

gω̃(x, y)
.

If ω = (δ1, δ2, . . . , δμ) ∈ Dμ and δk 
= 0 for 1 ≤ k ≤ μ, we have seen in
Lemmas 5.6 and 5.7 that Dk

pgω̃(x, y)/gω̃(x, y) satisfies the same estimates
given for Dk

pvs(x, y)/vs(x, y) in equations (5.12)- (5.23). Thus assume that
δt = 0 for some t, 1 ≤ t ≤ μ and δt′ 
= 0 for 1 ≤ t′ < t. A little thought shows
that if t = 1, gω̃(z) is a positive constant. If t = 2, gω̃(z) = c(ω)gδ1(z), where
c(ω) is a positive constant. Generally, if 2 ≤ t ≤ μ, gω̃(z) = c(ω)gω̃t−1(z),
where c(ω) is a positive constant and ωt−1 = (δ1, δ2, . . . , δt−1) ∈ Dt−1 and
δ1, δ2, . . . , δt−1 ∈ B. It follows that Dk

pgω̃(x, y)/gω̃(x, y) = 0 if t = 1 and
otherwise

Dk
pgω̃(x, y)/gω̃(x, y) = Dk

pgω̃t−1(x, y)/gω̃t−1(x, y).

By using Lemmas 5.6 and 5.7 again, it follows that if δt = 0 for some t, 1 ≤
t ≤ μ, Dk

pgω̃(x, y)/gω̃(x, y) is identically zero or satisfies the same estimates
given for vs in Theorem 5.8. Thus we see that Dk

pws(x, y)/ws(x, y) satisfies
the same estimates given for Dk

pvs(x, y)/vs(x, y) in Theorem 5.8.

Corollary 5.9. Let notation and hypotheses be as in Remark 5.3. Then ws

satisfies inequalities (3.3)–(3.7) in Sect. 3. If B and H are symmetric under
conjugation, ws(z̄) = ws(z) for all z ∈ H̄.

Proof. Let H1 ⊃ H be a convex, bounded open set such that Re(z) > 0 for
all z ∈ H1. For z ∈ H̄1 and Ls,R,α given by (3.2), we can also view Ls,R,α

as a bounded linear operator from Cm
C

(H̄1) → Cm
C

(H̄1), and this bounded
linear operator has a unique strictly positive normalized eigenfunction ŵs ∈
Cm

C
(H̄1). Uniqueness implies that ŵs(z) = ws(z) for all z ∈ H̄. Thus, after

replacing H by H1, we can assume that H is convex.
If (x1, y) and (x2, y) ∈ H̄ and x1 < x2, we obtain from (5.12) that

−2s

γ
(x2 − x1) ≤

∫ x2

x1

∂

∂x
log ws(x, y) dx = log

(ws(x2, y)
ws(x1, y)

)
≤ 0,
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which gives (3.4). If (x1, y) and (x2, y) ∈ H̄ and y1 < y2, we obtain from
(5.16) that

− s

γ
(y2 − y1) ≤

∫ y2

y1

∂

∂y
log ws(x, y) dy ≤ s

γ
(y2 − y1),

which gives (3.5). For z0 and z1 ∈ H, define zt = (1 − t)z0 + tz1 and note
that
∣∣∣
∫ 1

0

d

dt
log(ws(zt)) dt

∣∣∣ =
∣∣∣ log

(ws(z1)
ws(z0)

)∣∣∣

≤
∫ 1

0

∣∣∣
D1ws(zt)
ws(zt)

(x1 − x0) +
D2ws(zt)
ws(zt)

(y1 − y0)
∣∣∣ dt,

where zj = (xj , yj), j = 0, 1. Using (5.12) and (5.16), we obtain
∣∣∣ log

(ws(z1)
ws(z0)

)∣∣∣ ≤
∫ 1

0

∣∣∣
2s

γ
|x1 − x0| +

s

γ
|y1 − y0|

∣∣∣ dt

≤
√

5s

γ

√
(x1 − x0)2 + (y1 − y0)2,

which shows that ws satisfies (3.3). Combining Remark 5.3 and Corollary 5.9,
we see that ws in Corollary 5.9 satisfies (3.3)–(3.7). It remains to verify the
final statement in Corollary 5.9. If λs = r(Ls,R,α) > 0, we know that ws is the
unique normalized, strictly positive eigenfunction of Ls,R,α with eigenvalue
λs. Hence,

λsws(z̄) =
∑

b∈B

1
|z̄ + b|2s

ws(1/(z̄ + b)) + αws(0)

=
∑

b∈B

1
|z̄ + b̄|2s

ws(1/(z̄ + b̄)) + αws(0).

If we define w̃s(z) = ws(z̄) for all z ∈ H̄, the above calculation shows

λsw̃s(z) =
∑

b∈B

1
|z + b|2s

w̃s(θb(z))+αw̃s(0) =
∑

b∈B

1
|z + b|2s

w̃s(θb(z))+αw̃s(0).

By uniqueness of the strictly positive normalized eigenfunction, this implies
that w̃s = ws, so ws(z) = ws(z̄) for all z ∈ H. �

It remains to consider the case that B in Theorem 5.8 is countably
infinite and that s > 0 is such that

∑
b∈B(1/|b|2s) < ∞.

Theorem 5.10. Let B be a countably infinite set such that B ⊆ {z ∈ C :
Re(z) ≥ γ ≥ 1}. Assume that s > 0 is such that

∑
b∈B(1/|b|2s) < ∞. Let

H and Gγ be as in Theorem 5.8. As was noted in Sect. 3 (see also Section
5 in [40,44]), Ls : CC(H̄) → CC(H̄) defines a bounded linear map, where Ls

is defined by (3.1), and Ls has a unique (to within scalar multiples) strictly
positive Lipschitz eigenfunction vs which satisfies inequalities (3.3)–(3.5) on
H̄. If B and H are symmetric under conjugation, vs(z̄) = vs(z) for all z ∈ H̄.
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Proof. Select R0 > 0 such that BR0 is nonempty, and for R ≥ R0 define Ls,R

by

Ls,R =
∑

b∈BR

f(θb(z))
|z + b|2s

.

By Theorem 5.8, Ls,R has a strictly positive C∞ eigenfunction vs,R which
satisfies (3.3)– (3.7) and has sup norm one. If d denotes the diameter of H,
(3.3) implies that for all z ∈ H,

vs,R(z) ≥ exp[−(
√

5s/γ)d]. (5.24)

Now (3.3) implies that z �→ log(vs(z)) is Lipschitz with Lipschitz constant√
5s/γ, which is independent of R. Using (5.24), it then follows that z �→ vs(z)

is Lipschitz on H with Lipschitz constant C independent of R ≥ R0. By the
Ascoli-Arzela theorem, there exists an increasing sequence of positive reals
Rj → ∞ such that vs,Rj

(·) converges uniformly on H̄ to a function vs. By
uniform convergence, the function vs satisfies (5.24) on H̄, is strictly positive
on H̄, is continuous, and satisfies (3.3)–(3.5). If we define λs,R = r(Ls,R) for
R ≥ R0, Lemma 2.3 implies that λs,R ≤ λs,R′ whenever R ≤ R′. If we define
MR by

MR = ‖Ls,R‖ = sup
{ ∑

b∈BR

1
|z + b|2s

: z ∈ H̄
}

,

r(Ls,R) ≤ MR and MR ≤ M , where

M = sup
{ ∑

b∈B

1
|z + b|2s

: z ∈ H̄
}

.

Using our assumption that
∑

b∈B(1/|b|2s) < ∞, one can prove that
∑

b∈B
(1/|z + b|2s) < ∞, z ∈ H̄

and that
∑

b∈BRj
(1/|z + b|2s) converges uniformly on H̄ to

∑
b∈B(1/|z + b|2s)

as j → ∞, so z �→ ∑
b∈B(1/|z + b|2s) is continuous and bounded on H̄ and

M < ∞. Since λs,Rj
is an increasing sequence which is bounded by M ,

λs,Rj
→ λs > 0. Using this information one can see that

∑

b∈BRj

[
vs,Rj

(θb(z))/|z + b|2s
]

converges uniformly on H̄ to
∑

b∈B
[
vs(θb(z))/|z + b|2s

]
= λsvs(z). Details

are left to the reader.
Because vs is a strictly positive eigenfunction on H̄ for Ls with eigen-

value λs, Lemma 2.2 implies that λs = r(Ls). Theorem 5.3 in [40] implies
that Ls has no complex eigenvalues λ 
= r(Ls) with |λ| = r(Ls). If B and
H are symmetric under conjugation, it was proved in Corollary 5.9 that
vs,Rj

(z̄) = vs,Rj
(z) for all z ∈ H. The corresponding result for vs follows by

letting Rj → ∞. �
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The operator Ls induces a corresponding operator Λs : C0,1(H̄) →
C0,1(H̄), where C0,1(H̄) denotes the Banach space of Lipschitz continuous
maps f : H̄ → C. One finds (e.g., see [37,40,46]) that r(Λs) = r(Ls) := r > 0
and there exists r′ < r such that |ζ| ≤ r′ for all ζ ∈ σ(Λs), ζ 
= r(Λs).
However, r(Ls) may fail to be an isolated point in the spectrum of Ls :
C(H̄) → C(H̄), even for simple examples.

Theorem 5.11. Let hypotheses and notation be as in Theorem 5.10. For a
given number R > 2 and for B′

R := {b ∈ B : |b| > R}, assume that there exist
δs,R > 0 and ηs,R ≥ 0 such that

ηs,Rvs(0) ≤
∑

b∈B′
R

1
|z + b|2s

vs(θb(z)) ≤ δs,Rvs(0).

Let Ls,R,α be defined by (3.2) and define Ls,R+ = Ls,R,α for α = δs,R and
Ls,R− = Ls,R,α for α = ηs,R. Then we have

r(Ls,R−) ≤ r(Ls) ≤ r(Ls,R+). (5.25)

Proof. By our assumptions, if λs := r(Ls),

Lsvs = λsvs ≤ Ls,R+vs and Ls,R−vs ≤ λsvs.

Since vs is strictly positive on H̄, Lemma 2.2 implies (5.25). �

Now that we know the strictly positive eigenfunction vs satisfies (3.3)–
(3.5), when B is countably infinite, we can give estimates for the quantities
δs,R and ηs,R in Sect. 3.

Theorem 5.12. Assume that B = I1 or B = I2 and let vs be the unique
strictly positive eigenfunction of Ls in (3.1), where we take Ū ⊃ D such that
0 ≤ x ≤ 1 and |y| ≤ 1/2 for all (x, y) ∈ Ū . Assume that s > 1 and R > 2.
Then we have the following estimates:

∑

b∈I1,|b|>R

1
|z + b|2s

vs(θb(z)) ≤ exp
( s√

R2 − R

)( R

R − 1

)s

·
[( 1

2s − 1

)( 1
R − 1

)2s−1

+
(π

2

)( 1
s − 1

)( 1
R − √

2

)2s−2
]

vs(0).

∑

b∈I2,|b|>R

1
|z + b|2s

vs(θb(z)) ≤ exp
( s√

R2 − R

)( R

R − 1

)s

·
[(π

4

)( 1
s − 1

)( 1
R − √

2

)2s−2
]

vs(0).

Proof. First assume B = I1 in (3.1). Using (3.4) and (3.5), we have

vs(θb(z)) ≤ exp(s|θb(z)|)vs(0).

Now for z = x + iy ∈ Dh and b = m + in ∈ I1, we have

min
(x,y)∈Dh

(x + m)2 + (y + n)2 ≥ min
0≤x≤1

(x + m)2 + min
|y|≤1/2

(y + n)2
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≥ m2 + (|n| − 1/2)2 ≥ m2 + n2 − |n|.
Hence, for z ∈ Dh,

1
|z + b|2 =

1
(x + m)2 + (y + n)2

≤ 1
m2 + n2 − |n| .

Also, it is easy to check that if m2 + n2 ≥ R2 > 1,

1
m2 + n2 − |n| ≤ R

R − 1
1

m2 + n2
≤ 1

R2 − R
.

Hence, for m2 + n2 ≥ R2 > 1 and z ∈ Dh,

exp(s|θb(z)|) ≤ exp
( s√

m2 + n2 − |n|
)

≤ exp
( s√

R2 − R

)
.

It follows that
∑

b∈I1,|b|>R

1
|z + b|2s

vs(θb(z))

≤ exp
( s√

R2 − R

)( R

R − 1

)s( ∑

b∈I1,|b|>R

( 1
m2 + n2

)s)
vs(0).

Now for n = 0 and m ≥ R,
∑

m≥R

1
m2s

≤
∫ ∞

R−1

1
r2s

dr =
1

2s − 1

( 1
R − 1

)2s−1

.

For b = m + in ∈ I1 with m ≥ 1, n ≥ 1, and |b| ≥ R, let

B(m,n) = {(ξ, η) : m ≤ ξ ≤ m + 1, n ≤ η ≤ n + 1}.

Then for (u, v) ∈ B(m,n),

1
(u − 1)2 + (v − 1)2

≥ 1
m2 + n2

.

Also,

(u − 1)2 + (v − 1)2 ≥ (m − 1)2 + (n − 1)2 = m2 + n2 − 2(m + n) + 2

≥ m2 + n2 − 2
√

2
√

m2 + n2 + 2

= (
√

m2 + n2 −
√

2)2 ≥ (R −
√

2)2 ≡ R2
1.

Hence,
∑

m≥1,n≥1
m2+n2>R2

( 1
m2 + n2

)s

≤
∑

m≥1,n≥1
m2+n2>R2

∫∫

B(m,n)

( 1
(u − 1)2 + (v − 1)2

)s

du dv

≤
∫∫

u≥0,v≥0
u2+v2≥R2

1

( 1
u2 + v2

)s

du dv

=
π

2

∫ ∞

R1

1
r2s

r dr =
π

2
r2−2s

2 − 2s

∣∣∣
∞

R1
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=
π

2
1

2s − 2
1

R2s−2
1

=
π

4
1

s − 1

(
1

R − √
2

)2s−2

.

A similar argument shows that
∑

m≥1,n≤−1
m2+n2>R2

( 1
m2 + n2

)s

≤ π

4
1

s − 1

( 1
R − √

2

)2s−2

. (5.26)

Combining these estimates, we obtain
∑

b∈I1,|b|>R

1
|z + b|2s

vs(θb(z)) ≤ exp
( s√

R2 − R

)( R

R − 1

)s

·
[

1
2s − 1

( 1
R − 1

)2s−1

+
π

2
1

s − 1

( 1
R − √

2

)2s−2
]

vs(0) := δs,Rvs(0).

The estimate for the sum over I2 follows by a similar but simpler argument,
since only the inequality in (5.26) is needed. �

Remark 5.4. If B ⊂ I1 is an infinite set, s > τ(B) and vs is the corresponding
strictly positive eigenfunction of Ls in (3.1), an examination of the proof of
Theorem 5.12 shows that

∑

b∈B,|b|>R

1
|z + b|2s

vs(θb(z))

≤ exp
( s√

R2 − R

)( R

R − 1

)s( ∑

b∈B,|b|>R

1
|b|2s

)
vs(0),

so an estimate for δs,R in this case will follow from an upper bound on∑
b∈B

|b|>R

1
|b|2s .

It remains to estimate ηs,R in Theorem 3.3. We could, of course, take
ηs,R = 0, but we can do slightly better. Since the argument is similar to that
in Theorem 5.12, we just sketch the proof.

Theorem 5.13. Assume that B is an infinite subset of I1, that s > τ(B), and
that vs is the strictly positive eigenfunction of Ls in (3.1), where we take
U ⊃ D such that 0 ≤ x ≤ 1 and |y| ≤ 1/2 for all (x, y) ∈ Ū . Then we have
that

∑

b∈B
|b|>R

1
|z + b|2s

vs(θb(z))

≥ exp
( −√

5s√
R2 − R

)( R

R +
√

5 + [5/(4R)]

)s

vs(0)
∑

b∈B
|b|>R

1
|b|2s

:= C(R, s)vs(0)
∑

b∈B,|b|>R

1
|b|2s

.
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If B = I1, s > 1 and θR = arcsin(1/(R +
√

2)),
∑

b∈I1
|b|>R

1
|z + b|2s

vs(θb(z))

≥ C(R, s)vs(0)(π − 2θR)
( 1

2s − 2

)( 1
R +

√
2

)2s−2

:= ηs,Rvs(0).

If B = I2 and s > 1,
∑

b∈I2
|b|>R

1
|z + b|2s

vs(θb(z))

≥ C(R, s)vs(0)(π/2 − 2θR)
( 1

2s − 2

)( 1
R +

√
2

)2s−2

:= ηs,Rvs(0).

Proof. By using (3.3) and the estimate in the proof of Theorem 5.12 that
1/|z + b|2 ≤ 1/(R2 − R) for |b| ≥ R and z ∈ Ū , we get

∑

b∈B
|b|>R

1
|z + b|2s

vs(θb(z)) ≥ exp
( −√

5s√
R2 − R

)
vs(0)

∑

b∈B

1
|z + b|2s

.

If b ∈ B, |b| > R, and z ∈ Ū , one can check that

|z + b|2 ≤ [|b|2(4R2 + 4
√

5R + 5)
]
/[4R2],

and this gives the first inequality in Theorem 5.13. If b = m + ni ∈ I1, let
b̂ = (m + 1) + (n + 1)i if n ≥ 0 and b̂ = (m + 1) + (n − 1)i if n < 0. Let
GR = {(x, y) ∈ R

2 : x > 1 and
√

x2 + y2 ≥ R +
√

2}. One can check that
∑

b∈I1
|b|>R

1
|b|2s

≥
∑

b∈I1
|b̂|>R+

√
2

1
|b|2s

≥
∫

GR

( 1
x2 + y2

)s

dx dy,

and using polar coordinates gives the second inequality in Theorem 5.13. For
I2, let HR = {(x, y) ∈ R

2 : x > 1, y < −1, and
√

x2 + y2 > R +
√

2}. One
can check that

∑

b∈I2
|b|>R

1
|b|2s

≥
∑

b∈I2
|b̂|>R+

√
2

1
|b|2s

≥
∫

HR

( 1
x2 + y2

)s

dx dy,

and one obtains the final inequality in Theorem 5.13 with the aid of polar
coordinates. �

Once the mesh size h has been chosen and R > 2 has been chosen
(if B ⊂ I1 is infinite), the above results give formulas for nonnegative square
matrices As and Bs such that r(As) ≤ r(Ls) ≤ r(Bs), where Ls is as in (3.1).
In particular, for B = I1, I2, or I3, if r(As2) > 1 and r(As2) is very close
to one and r(Bs1) < 1 and r(Bs1) is very close to one, then the Hausdorff
dimension s∗ of the invariant set corresponding to B satisfies s2 < s∗ < s1.
Here s2 and s1 are obtained as described earlier.
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Remark 5.5. For the set I1 and s = 1.86, evaluating the above expressions
gives for δs,R and ηs,R the values

R = 100 : δs,R = .00071, R = 200 : δs,R = .00021, R = 300 : δs,R = .00010,

R = 100 : ηs,R = .00059, R = 200 : ηs,R = .00019, R = 300 : ηs,R = .000096.

For the set I2 and s = 1.49, evaluating the above expressions gives for δs,R

and ηs,R the values

R = 100 : δs,R = .0184, R = 200 : δs,R = .0091, R = 300 : δs,R = .0061,

R = 100 : ηs,R = .0160, R = 200 : ηs,R = .0085, R = 300 : ηs,R = .0058.

6. Computing the Spectral Radius of As and Bs

In previous sections, we have constructed matrices As and Bs such that
r(As) ≤ r(Ls) ≤ r(Bs). The m × m matrices As and Bs have nonnegative
entries, so the Perron-Frobenius theory for such matrices implies that r(Bs)
is an eigenvalue of Bs with corresponding nonnegative eigenvector, with a
similar statement for As. One might also hope that standard theory (see
[39]) would imply that r(Bs), respectively r(As), is an eigenvalue of Bs with
algebraic multiplicity one and that all other eigenvalues z of Bs (respectively,
of As) satisfy |z| < r(Bs) (respectively, |z| < r(As)). Indeed, this would be
true if Bs were primitive, i.e., if Bk

s had all positive entries for some integer
k. However, typically Bs has many zero columns and Bs is neither primitive
nor irreducible (see [39]); and the same problem occurs for As. Nevertheless,
the desirable spectral properties mentioned above are satisfied for both As

and Bs. Furthermore Bs has an eigenvector ws with all positive entries and
with eigenvalue r(Bs); and if x is any m × 1 vector with all positive entries,

lim
k→∞

Bk
s (x)

‖Bk
s (x)‖ =

ws

‖ws‖ ,

where the convergence rate is geometric. Of course, corresponding results hold
for As. Such results justify standard numerical algorithms for approximating
r(Bs) and r(As).

These results were proved in the one dimensional case in [13]. Similar
theorems can be proved in the two dimensional case, but because the proofs
are similar, we omit the argument in the two dimensional case. The basic
point, however, is simple: Although As and Bs both map the cone K of
nonnegative vectors in R

m into itself, K is not the natural cone in which
such matrices should be studied. Instead, one proceeds by defining, for large
positive real M , a cone KM ⊂ K such that As(KM ) ⊂ KM and Bs(KM ) ⊂
KM . The cone KM is the discrete analogue of a cone which has been used
before in the infinite dimensional case (see [44], Section 5 of [40], Section 2
of [33] and [5]). Once one shows that As(KM ) ⊂ KM and Bs(KM ) ⊂ KM ,
the desired spectral properties of As and Bs follow easily by the arguments
used in the papers cited above. In a later paper, we shall consider higher
order piecewise polynomial approximations to the positive eigenfunction vs

of Ls. We hope to show that although the corresponding matrices As and Bs
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no longer have all nonnegative entries, it is still possible to obtain rigorous
upper and lower bounds on the Hausdorff dimension.

7. Log Convexity of the Spectral Radius of Λs

For s ∈ R, we define Λs : X → X := Cm(H̄) and Ls : Y → Y := C(H̄) by

(Λs(f))(x) =
∑

β∈B
(gβ(x))sf(θβ(x)) (7.1)

and

(Ls(f))(x) =
∑

β∈B
(gβ(x))sf(θβ(x)). (7.2)

In general, if V is a convex subset of a vector space X, we shall call a
map f : V → [0,∞) log convex if (i) f(x) = 0 for all x ∈ V or (ii) f(x) > 0 for
all x ∈ V and x �→ log(f(x)) is convex. Products of log convex functions are
log convex, and Hölders inequality implies that sums of log convex functions
are log convex.

The following result plays an important role in our numerical approxi-
mation scheme.

Theorem 7.1. Assume that hypotheses (H4.1), (H4.2), and (H4.3) are sat-
isfied with m ≥ 1 and that H ⊂ R

n is a bounded, open mildly regular set.
For s ∈ R, let Λs and Ls be defined by (7.1) and (7.2). Then we have that
s �→ r(Λs) is log convex, i.e., s �→ log(r(Λs)) is convex on [0,∞).

A proof of this and related results can be found in many papers ([8,13–
15,27,29,37,42]). Note that the terminology super convexity is used to denote
log convexity in [27] and [29], presumably because any log convex function is
convex, but not conversely. Theorem 7.1, while adequate for our immediate
purposes, can be greatly generalized by a different argument that does not
require existence of strictly positive eigenvectors. This generalization (which
we omit) contains Kingman’s matrix log convexity result in [29] as a special
case.

In our applications, the map s �→ r(Ls) will usually be strictly decreas-
ing on an interval [s1, s2] with r(Ls1) > 1 and r(Ls2) < 1, and we wish to
find the unique s∗ ∈ (s1, s2) such that r(Ls∗) = 1. The following hypothesis
insures that s �→ r(Ls) is strictly decreasing for all S.
(H7.1): Assume that gβ(·), β ∈ B satisfy the conditions of (H4.1). Assume
also that there exists an integer μ ≥ 1 such that gω(x) < 1 for all ω ∈ Bμ

and all x ∈ H̄.

Theorem 7.2. Assume hypotheses (H4.1), (H4.2), (H4.3), and (H7.1) and let
H be mildly regular. Then the map s �→ r(Λs), s ∈ R, is strictly decreasing
and real analytic and lims→∞ r(Λs) = 0.

This proof of this result is given in [13,37], and elsewhere.
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Remark 7.1. Assume that the assumptions of Theorem 7.2 are satisfied and
define ψ(x) = log(r(Ls)) = log(r(Λs)) (where log denotes the natural loga-
rithm), so s �→ ψ(s) is a convex, strictly decreasing function with ψ(0) > 1
(unless |B| = p = 1) and lims→∞ ψ(s) = −∞. We are interested in find-
ing the unique value of s such that ψ(s) = 0. In general suppose that
ψ : [s1, s2] → R is a continuous, strictly decreasing, convex function such
that ψ(s1) > 0 and ψ(s2) < 0, so there exists a unique s = s∗ ∈ (s1, s2)
with ψ(s∗) = 0. If t1 and t2 are chosen so that s1 ≤ t1 < t2 ≤ s∗ and
tk+1 is obtained from tk−1 and tk by the secant method, an elementary
argument show that limk→∞ tk = s∗. If s∗ ≤ t2 < t1 < s2 and s1 ≤ t3,
a similar argument shows that limk→∞ tk = s∗. If ψ ∈ C3, elementary
numerical analysis implies that the rate of convergence is faster than lin-
ear (= (1 +

√
5)/2). In our numerical work, we apply these observations,

not directly to ψ(s) = log(r(Λs)), but to decreasing functions which closely
approximate log(r(Λs)).

One can also ask whether the maps s �→ r(Bs) and s �→ r(As) are log
convex, where As and Bs are the previously described approximating matri-
ces for Ls. An easier question is whether the map s �→ r(Ms) is log convex,
where As and Bs are obtained from Ms by adding error correction terms. In
[13], it was proved that in the one dimensional case, s �→ r(Ms) is log convex.
The proof in the two dimensional case is similar, and we do not repeat it
here.
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[34] Mallet-Paret, J., Nussbaum, R.D.: Eigenvalues for a class of homogeneous cone
maps arising from max-plus operators. Discrete Contin. Dyn. Syst. 8(3), 519–
562 (2002)

[35] Mallet-Paret, J., Nussbaum, R.D.: Generalizing the Krĕın–Rutman theorem,
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